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Abstract

This thesis proposes a spacecraft guidance system designed for a unique class of orbit
transfer problems. It considers a vehicle that undertakes a maneuver with the objective
of precisely flying through a point in space at a particular time. The spacecraft must
automatically determine a transfer orbit that will take it from a circular, low-earth parking
orbit to a velocity-unconstrained rendezvous with a Keplerian trajectory. A constraint
exists that both the final transfer orbit and the ultimate paths of any additional stages
must lead rapidly to atmospheric reentry, typically within one revolution. Constrained
to a fixed ∆V resulting from a two stage thrust profile, the spacecraft must execute a
burn maneuver that can effectively dissipate energy to place it on a transfer orbit with
previously unknown velocity requirements. Finally, the guidance strategy should be robust
to the uncertainties typically encountered in real spacecraft orbit transfer problems.

In order to meet these constraints, this thesis first develops new analytic analysis of
the relationship between reentry, perigee, and ∆V. Next, a framework is developed for
selecting a favorable transfer orbit while considering the various hard and soft constraints
in the problem. Following transfer orbit selection, a plane of maneuver is calculated
that maximizes likelihood of first stage reentry. Then traditional guidance strategies
are adapted to the problem and hypothetical spacecraft design to produce a closed loop
guidance solution. Results are presented that demonstrate the effectiveness of the new
method.
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Thesis Supervisor: Dr. Richard H. Battin
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Chapter 1

Introduction

Since the earliest launch of artificial satellites into orbit around the earth, engineers of

spacefaring nations have encountered a variety of problems relating to the transfer of a

space vehicle from one trajectory to another. These problems, most generally referred

to as orbit transfer problems, have required Guidance, Navigation, and Control (GN&C)

engineers to develop algorithms tailored to each unique space mission and specific set of

vehicle hardware. Time and again, engineers have been able to successfully respond to

mission requirements and in the process have developed a variety of algorithmic tools to

address a variety of specific problems.

One class of orbit transfer problems addressed for nearly every space mission is orbit

insertion. In these problems, the spacecraft must efficiently employ its actuators to move

from an initial parking orbit to a final orbit where it was designed to execute its mission.

These final orbits can be termed Keplerian trajectories, since the relationship between

the positions, velocity, and time for these paths was first determined by Johannes Kepler

in the year 1619. Rendezvous is a similar class of problem. Instead of a final constraint

being the path of an imaginary object, the Keplerian trajectory is actually occupied by

another spacecraft. Many highly visible rendezvous missions have been successful and

include Gemini and Apollo as well as every Space Shuttle and Soyuz mission to service

the International Space Station.

These vehicles employ a large variety of sensors and actuators to complete each individ-

ual mission. One class of important actuators are the thrusters used to impart changes in
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velocity. Most space vehicles, including the Shuttle and most launch vehicle upper stage

delivery systems, use liquid propellant engines. These liquid engines offer the GN&C

engineers a relatively large degree of control, since the thrust ultimately responsible for

changing the trajectory can usually be adjusted and toggled on and off.

A comparatively small number of space vehicles employ solid rocket engines, a conse-

quence of the relative lack of options that solid rocket engines provide to engineers. Once

a solid rocket is ignited, the thrust cannot be controlled precisely or stopped. Rather,

it will continue to deliver its thrust based on the predetermined thrust profile and any

environmental variables that impact this thrust profile. In fact, solid rocket use has typ-

ically been limited to apogee kick stage motors used for geostationary orbit insertion or

similar planetary insertion missions. The precise value of ∆V that is required can be

determined years before launch and the hardware components can be designed to meet

that very specific requirement.

1.1 The New Problem

This thesis considers a problem very much related to rendezvous and orbit insertion, but

one with enough differences in both trajectory and vehicle constraints to warrant a new

approach. In this problem, a spacecraft has been placed in a low-altitude, circular parking

orbit around the earth. At some point in the future and at very short notice, it must

execute a maneuver that will place it on a trajectory to rendezvous with a point on a simu-

lated Keplerian trajectory. Typically, a rendezvous mission constrains the final boundary

value of the transfer to a given set of positions, velocities, and times corresponding to a

final orbit. In this problem, the final velocity of the transfer remains unconstrained and

the final boundary value is instead constrained to a set of positions and times correspond-

ing to a Keplerian trajectory. In simple language, the vehicle must fly through a position

at a certain time, the pair being one of a set of points in space and time.

The second key aspect of this problem is the unusual coupling of a fixed ∆V capability

with a previously unknown ∆V requirement. The spacecraft is constrained to hardware

consisting of two hypothetical solid rocket stages, the details of which are given in Ap-
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Figure 1-1: Sample Mission Trajectory

pendix A. The solid rocket engines are the cause of the fixed ∆V capability and thrust

profile. This makes the problem more complex since the ∆V required remains unknown

until after the design and launch of the spacecraft, contrasting with the solid apogee kick

stage problem, where the required ∆V is known in the earliest stages of design. Since the

required ∆V may be less that the capability, there is a risk of overshooting the intended

point of rendezvous unless a method of reducing the effective amount of ∆V is developed

and employed.

The third key constraint for this problem is one that is placed on the trajectory. It

is presumed that the mission has requirements that all stages of the vehicle must re-

enter the atmosphere in a specific amount of time. The large velocity changes available

from the hardware can easily result in orbit transfers that will cause the space vehicle to

remain in earth orbit for thousands of years before re-entry. Just as easily, orbit transfers

can be designed that will cause atmospheric re-entry in a matter of hours at most. Few

people would disagree that it is unwise to endanger generations of future human space

exploration with space debris. This is particularly the case when it is possible to design

the guidance law to cause immediate re-entry with no less effectiveness in completing the

orbit transfer mission. The specific guidance solution developed in this thesis uses the
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Figure 1-2: GN&C Components of the Problem

constraint of atmospheric re-entry within one revolution and this essentially flows down

to a constraint on the perigee of the transfer orbit. In the event that an actual mission has

less severe time constraints on re-entry, adjustments to the guidance laws are considered

as well.

1.2 General Approach to Solving the Problem

In preparation to solve this overall GN&C problem, it will first be broken into distinct

segments that might correspond to distinct algorithmic components of GN&C flight code.

Figure 1-2 highlights the flow of information between the various components. First, it

is assumed the spacecraft’s ground station would issue a command to begin a rendezvous

sequence with a given Keplerian trajectory, which would be uploaded to the spacecraft

flight computer.

After receiving the command to commence the mission, the spacecraft is responsible

for determining a transfer orbit that would take it from its parking orbit to a point
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on the Keplerian trajectory. The specific transfer orbit should be selected based on its

characteristics, such as one that meets the re-entry constraint and has a high probability

of success. The problem of determining an ignition time and rendezvous time is referred

to the Trajectory Boundary Condition Selection (TBCS) problem.

Once the baseline transfer orbit has been determined by TBCS, the next problem is

to determine a reference trajectory and set of reference commands that will deliver the

spacecraft to the rendezvous point at the rendezvous time. The final step is the closed

loop guidance portion. Continually throughout the maneuver at a specified guidance

update rate, the spacecraft will propagate forward its state vector with the reference

control inputs in order to determine if it is still on track to reach the rendezvous point.

The spacecraft will typically determine that small modifications to the reference control

variables will change the trajectory enough to eliminate the expected miss distance, and

thus updates the reference commands.

The control system problem is concerned with transforming the desired state vector

into signals that can be interpreted by control system actuators. The navigation system

uses signals corresponding to physical measurements by sensors to reconstruct the state

vector of the vehicle. Design of the control system and navigation system are heavily

dependent on the particular hardware. Since this thesis only considers a hypothetical

vehicle, the emphasis is on the more abstract guidance system approach which could be

adapted to a relatively broad array of vehicle actuators and sensors. Consequently, the

specific design of navigation system and control system for a spacecraft are not included

in this thesis. However, the development of the guidance system must make reasonable

assumptions about the capability of control systems. In this case, it is assumed that the

spacecraft is maneuverable and is able to employ agile thrust vector control to change

the thrust direction during the course of the burns as well as thrusters that allow for

reorientation of the vehicle prior to ignition of the engines.
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1.3 Thesis Overview

Chapter 2 reviews several fundamental concepts relating to orbital mechanics, the orbital

boundary value problem, atmospheric re-entry, coordinate frames, and representations of

attitude. Astrodynamics relationships that are used in derivations are explained.

Chapter 3 introduces guidance techniques that will form the backbone for the solution.

The General energy management technique enables a vehicle to impart velocity along a

curve such that net ∆V can be less than the ∆V actually used. It is an important

technique that can add degrees of freedom to the guidance system. The method of linear

perturbations upon a reference trajectory is a proven technique of closed loop guidance

for vehicles with dynamics that can be partially modeled.

Chapter 4 explores the interaction between reentry and ∆V that is uniquely important

to the problem under consideration. In the process, a few key relationships are derived

that will form key components of the future guidance algorithm.

Chapter 5 explores what is called Trajectory Boundary Condition Selection (TBCS).

Given the parking orbit and Keplerian trajectories, this chapter transforms the selection

of the transfer orbit into an optimization problem while considering the hard and soft

constraints in this problem as well as other properties that could be of consideration in

similar missions.

Chapter 6 details the development of the guidance algorithm. Lambert GEM Steering

is introduced. Then a new method of finding a reference trajectory is outlined. Finally,

Chapter 7 outlines the specific application of the method of linear perturbations upon a

reference trajectory to this problem.

Chapter 8 presents several graphical and numerical results from algorithms developed

in the preceding chapters. Chapter 9 summarizes the general conclusions that can be

drawn from the results and suggests potential avenues for future research.
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Chapter 2

Fundamental Astrodynamics

A basic grasp of orbital motion is a prerequisite to understanding many of the concepts

contained in this thesis. Nonetheless, this chapter reviews several fundamental relation-

ships and ideas and defines quantities which will be used in derivations and explanations

in the following chapters.

2.1 Orbital Geometry and the Two-Body Problem

Newton’s law of universal gravitation is the primary cause of orbital motion, and is shown

in Equation 2.1. If it assumed that Newton’s law of gravitation acts between two point

masses and the smaller mass is negligible compared to the larger mass, such as a spacecraft

in motion around the earth, the resulting equation of motion is given in Equation 2.2. The

vector r is the position of the smaller mass with respect to an inertially-fixed coordinate

system centered at the larger mass. This is known as the equation of two-body motion.

Fg =
Gm1m2

r2
(2.1)

r̈ +
µ

r3
r = 0 (2.2)

where µ = Gearthmearth = 398600.5 km3/sec2
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Figure 2-1: Conic Sections [6]

In addition to assuming that the two bodies are point masses, the two body equation

of motion disregards disturbing forces such as the the gravitational pull of the sun and

moon, atmospheric drag at low altitudes, and higher order gravitational effects such as J2.

Depending on initial conditions of r and ṙ, Equation 2.2 can lead to four different types

of orbits: circular, elliptic, parabolic, and hyperbolic. These four shapes are all known

as conic sections. Figure 2-1 shows how different conics result from the intersection of a

plane with a cone.

2.1.1 Orbital Elements

Defining the present and future location of an object moving under the influence of another

object requires six independent quantities. A position vector r ε <3 and velocity vector

v ε <3 is one such representation. However, these quantities alone tend to defy intuition for

the shape of an orbit. For centuries, astronomers have used six classical orbital elements

which describe the size, shape, and orientation of orbits, as well as position within those

orbits.

Semi-major axis a is a physical distance used to defines the size of the orbit. It is also

directly related to the period of the orbit. For an ellipse, a is one-half of the longer axis

as illustrated in Figure 2-2.

Eccentricity e is a non-dimensional quantity which measures the particular shape of
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Figure 2-2: Geometry of Elliptical Orbits [6]
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the orbit. A circular orbit has an eccentricity of zero. An elliptical orbit has an eccentricity

in the range (0, 1). Parabolic orbits have eccentricities of one while hyperbolic orbits have

eccentricities in the range (1,∞). Mathematically, eccentricity is the ratio of the distance

between the foci (2c) and the major axis of the ellipse (2a), as depicted in Figure 2-2 and

stated in Equation 2.3.

e =
2c

2a
(2.3)

Semi-major axis and eccentricity are often combined in a quantity known as the pa-

rameter p of an orbit, which appears often in equations describing orbital motion. The

parameter is also depicted in Figure 2-2 as the radius at the points ±90 degrees from the

pericenter, which is the point of minimum radius between the two bodies.

p = a(1− e2) (2.4)

The next three orbital elements measure the orientation of an orbit. Inclination (i)

is an angle that describes the tilt of an orbit with respect to the equatorial plane. For

a non-zero inclination, the longitude or right ascension of the ascending node (Ω) is the

angle measured from the primary (x) axis of the equatorial plane to ascending node.

The ascending node n̂ is defined as the point where the satellite crosses from the southern

hemisphere to the northern hemisphere, as depicted in Figure 2-3. Argument of pericenter

(ω) is the angle between the ascending node and pericenter. Circular orbits and those

which lie entirely in the equatorial plane require alternate orbital elements in place of Ω

and ω.

The final classical orbital element describes where in an orbit a satellite is currently

located. True anomaly, ν, is the angular measurement from pericenter to the current

position of the satellite. Figure 2-3 depicts the four angular classical orbital elements.

2.1.2 Geometry of An Elliptical Orbit

This work is concerned primarily with elliptical orbits. Two additional quantities will

become important. For an earth-centered orbit, perigee and apogee define the point in
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Figure 2-3: Classical Orbital Elements [6]

each orbit where the radius of the satellite is smallest and largest, respectively.

rp = a(1− e) (2.5)

ra = a(1 + e) (2.6)

Note that the radius of perigee rp is different than the perigee altitude hp by the

amount of the earth’s radius. Figure 2-4 clarifies these distinctions.

2.1.3 Momentum and Energy Relationships

There are a few additional quantities that are critical in the relationships described in the

following chapters. The angular momentum of an orbit h is an invariant vector quantity

normal to the satellite’s plane of motion. Its magnitude h establishes a key relationship

between µ and p in Equation 2.8.

h = r× v = constant (2.7)
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Figure 2-4: Altitudes in Elliptic Orbits [6]

p ≡ h2

µ
(2.8)

The eccentricity vector e is a vector of magnitude e which points in the direction from

the focus to the location of perigee. Equation 2.10 is used to determine the eccentricity

vector with from vectors r and v from any point on the orbit.

e = ‖e‖ (2.9)

µe = v × (r× v)− µ

r
r (2.10)

The energy integral is known as the vis-viva integral. At any point in an orbit, it

relates the scalar radius from the focus r to the scalar velocity v and semi-major axis a

of the orbit, as shown in Equation 2.11.

v2 = µ

(
2

r
− 1

a

)
(2.11)
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Figure 2-5: Graphical Depiction of Eccentric Anomaly [2]

2.1.4 Orbit Propagation - Kepler’s Problem

An important problem in astrodynamics is the propagation of a satellite position and

velocity forward in time. In two body motion, all of the classical orbital elements are

invariant with the exception of true anomaly ν. Thus, orbit propagation generally involves

finding a, e, i, Ω, and ω from the initial position and velocity r and v. References [4] and

[6] cover this in detail. Then using the propagation time, ∆t = (t2− t1), the value of ν is

found.

This is known as Kepler’s problem. There is not a direct equation relating ν and ∆t.

Rather, for propagating eccentric orbits, two auxiliary angles called eccentric anomaly (E)

and mean anomaly (M) are required. Eccentric anomaly has a geometric representation as

the angle from pericenter passage to a satellite’s position on an auxiliary circle measured

from the center of the ellipse. Figure 2-5 depicts the geometric interpretation of E while

Equation 2.12 is the mathematical relationship between true and eccentric anomaly.

tan

(
1

2
ν

)
=

√
1 + e

1− e
tan

(
1

2
E

)
(2.12)

Eccentric anomaly is related to mean anomaly by Equation 2.13, which is widely known

as Kepler’s equation. Equation 2.13 can be solved directly forM , but when finding E from

M , it requires an iterative method for a solution, typically with successive substitutions
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[6].

M = E − e sinE (2.13)

n =

√
µ

a3
(2.14)

M2 −M1 = n (t2 − t1) (2.15)

Mean anomaly has no geometric representation, but is linearly related to the passage

of time by a quantity called mean motion, n. Mean motion is constant for a given a, as

shown in Equation 2.14. In Equation 2.15, the change in mean anomaly is simply the

product of mean motion and time.

2.2 Orbit Transfer

The background presented in this chapter has been mostly concerned with understanding

the motion of satellites traveling on the invariant orbit paths of two body motion. Another

important class of astrodynamics deals with finding orbits that meet certain position and

time constraints.

2.2.1 Geometry of Orbital Boundary Value Problem

Figure 2-6 shows the basic geometry for the problem of finding a transfer orbit connecting

points P1 and P2. Position vectors r1 and r2 describe the respective positions measured

from the center of the large body located at focus F . The velocities v1 and v2 are the

respective velocity vectors. Finally, the transfer angle θ is the angle between the points

measured from the central body.

The general boundary values for a transfer orbit are r1, r2, v1, v2, and a given transfer

time ∆t = t2 − t1. A transfer orbit defined by these values would satisfy the boundary

conditions if two-body (Kepler) propagation of the state (r1,v1) for ∆t results in a final
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Figure 2-6: Geometry of Orbital Boundary Value Problem [2]

state (r2,v2). A boundary value problem is generally concerned with fixing a certain

number of these boundaries and solving for the others.

c = r2 − r1 (2.16)

The vector c is known as the chord of the orbit transfer problem as defined in Equation

2.16. The magnitude of the chord, c, is an important quantity used in the solution.

2.2.2 The Lambert Problem

The Lambert Problem is a subset of the general orbital boundary value problem where

two position vectors and the transfer time are fixed and the boundary velocities must be

solved for. It was first characterized by Johannes Lambert in 1761. Lambert discovered

a relationship between the geometry of the orbit transfer and the transfer time. The

original form is shown in Equation 2.17.

√
µ (t2 − t1) = F (a, r1 + r2, c) (2.17)
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Gauss discovered in 1809 the full solution that eluded Lambert. In 1987, Richard

Battin of MIT published a solution improving upon Gauss’s method by removing the

singularity at θ = 180 degrees and offering substantial improvements in convergence. The

statement of the Lambert problem that is useful here is given in Equation 2.18. The

actual algorithm has been omitted from this text but is widely available.

(v1,v2) = F (r1, r2,∆t, tm) (2.18)

For given position vectors r1 and r2, and a given time of flight, there are two conjugate

orbits connecting P1 to P2. Those conjugate orbits will typically follow opposite paths

around the earth. The binary transfer method term tm is used to choose either the short

way or the long way around the earth from P1 to P2. In Figure 2-6, the short method is

illustrated by the counterclockwise path from P1 to P2 while the long way (for a different

transfer time) is illustrated by the clockwise path.

The velocities at the boundaries, v1 and v2, define the transfer orbit and are useful

in determining any required maneuvers to place the spacecraft on this new transfer orbit

trajectory from an existing orbit. While the Lambert problem typically provides two

possible paths from P1 to P2, usually only one, if either, are feasible for a real spacecraft.

Typically only one of the two possible v1 solutions is aligned sufficiently with the space-

craft’s original velocity vector to make a velocity changing maneuver feasible. There is

also an issue in that a Lambert routine may return a trajectory that intersects the surface

of the earth on the way to P2.

It is important to note that all solutions of the Lambert problem are dependent on

the assumption of two body mechanics. Vallado [6] offers a detailed algorithm for the

Gauss, Battin, and universal variable solutions to the Lambert problem. Battin [2] is also

an excellent resource for details on the derivation of his method.

The Lambert Problem and Required ∆V

Suppose a spacecraft has a particular position r1 and velocity vcurrent at t1 and has the

objective of reaching the point r2 at a future time t2. Then the Lambert boundary velocity
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v1 from Equation 2.18 can be used with Equation 2.19 to find the instantaneous change

in velocity ∆vinstantaneous that will bring the spacecraft to r2 at t2. This is often referred

to as the Lambert ∆V.

∆vinstantaneous = v1 − vcurrent (2.19)

Note that in this document, ∆v refers to a specific change in velocity that can be cal-

culated, while ∆V refers to the general idea of velocity change (or integrated acceleration

resulting from thrust).

2.3 Atmospheric Drag and Re-entry

Atmospheric drag is a disturbing force that is one of several perturbations that cause

the path of satellites to vary slightly from that predicted by Equation 2.2, the two-body

equation of motion. Ultimately, drag has a significant impact on re-entry characteristics.

The perturbation acceleration due to atmospheric drag acts in the direction opposite

to the velocity vector and is given in Equation 2.20. The variations in atmospheric drag

are primarily due to variations in the density of the atmosphere ρ. Atmospheric density

varies substantially with the 11-year solar cycle and even varies from the daytime half

to the nighttime half of the planet. This variation is particularly large for the altitudes

between 500 and 800 km, where it may vary by an order of magnitude between solar

minimums and solar maximums [9]. Atmospheric drag also depends on the the ballistic

coefficient BC of the satellite, shown in Equation 2.21, which depends on the mass m,

cross-sectional area A, and coefficient of drag CD.

adrag =
−ρCDAvv

2m
=
−1

2

ρvv

BC
(2.20)

BC =
m

CDA
(2.21)

Because of the higher density atmosphere at lower altitudes, drag has the highest effect

near the perigee of a satellite’s orbit. Since it acts retro to the velocity vector, its effect is
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Figure 2-7: Sample Satellite Lifetimes from a 700 km Circular Orbit [9]

to reduce the velocity at perigee. For elliptical orbits, this causes rp to stay constant while

ra continually decreases until rp = ra and the orbit is circular. At that point, semi-major

axis a continues to decrease until atmospheric drag reduces the velocity so much that

re-entry becomes imminent. At some point, near an altitude of 100 km, the drag is so

large that the spacecraft will reenter within one orbit.

Figures 2-7 and 2-8 are well-known illustrations that shed light on the impact of at-

mospheric drag on satellite lifetime. Figure 2-7 shows the changes in altitude for three

different ballistic coefficients starting at three different times (corresponding to the 1956

beginning of the solar maximum, the 1959 end of the solar maximum, and the 1962 be-

ginning of the solar minimum). This illustrates that depending on the ballistic coefficient

and time of launch, the satellite could reenter from its 700 km orbit anywhere from five

years to 190 years after orbit insetion.

Given a starting altitude and ballistic coefficient, Figure 2-8 shows the range of satellite

lifetimes that may result. For instance, if a satellite with a ballistic coefficient of 65 kg/m2
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Figure 2-8: Estimate of Circular Orbit Satellite Lifetimes from Drag [9]
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was placed at 500 km, it would remain there between one and five years. Reference [9]

has more information on atmospheric drag.

2.4 Reference Frames

Until now, vector quantities have been considered without regard to reference frame. This

section describes the orientation and purpose of various frames which will be critical to

understanding formulations in the following chapters.

2.4.1 Earth-Centered Inertial Frame

Newton’s equations are only valid in inertial space. In order to analyze the motion of a

spacecraft, it is necessary to use an inertial reference frame, which is a stationary, non-

rotating set of orthogonal axis vectors. For earth-orbiting satellites, this typically involves

using the Earth-Centered Inertial (ECI) frame. The ECI frame has a first principal (x)

axis in the direction of the astronomical first point of Aries (the direction to the sun at

the vernal equinox), a fundamental plane defined by the earth’s equatorial plane, and

third principal axis defined by the earth’s rotational axis (the North Pole). This is also

often called the IJK frame, from the unit vectors typically used to describe its principal

directions. Since the earth’s spin axis (and thus equatorial plane) tends to wobble a bit,

the ECI frame is typically tied to some epoch, such as January 1, 2000 [4].

Figure 2-9 shows the principal axes of the ECI frame. Note that the frame does

not rotate with the earth but would require a rotation by an angle, global sidereal time

(GST), into another coordinate system that is fixed to the earth’s surface, such as the

Earth-Centered Fixed (ECF) frame [6]. Since the origin of the ECI frame is at the center

of the earth, and the earth revolves around the sun, the ECI is not truly inertial. However,

this approximation is justified for the purpose of analyzing spacecraft motion around the

earth.
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Figure 2-9: Earth Centered Inertial (ECI) Frame [6]

2.4.2 Radial-Tangential-Normal Frame

The Radial-Tangential-Normal frame is a local orbital frame. The origin is located at the

spacecraft’s center of mass. The origin is not fixed but rotates as the spacecraft travels

around the earth. Thus, it is not an inertial frame. The primary axis is along the vector

r from the center of the earth toward the spacecraft. The fundamental plane is the orbit

plane. Therefore, the second axis is in the direction of the local horizontal component

of the velocity vector (or if the orbit is exactly circular, the velocity vector direction

itself) and the third axis is parallel to the satellite’s angular momentum vector h. The

transformation matrix from the RTN frame to the ECI frame is found in the next section,

Equation 2.22.

2.4.3 Spacecraft Body Frame

The spacecraft body frame is a set of orthogonal vectors that are fixed to the body of the

spacecraft. The various sensors and actuators of the spacecraft are typically defined with

respect to the body frame.
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Figure 2-10: Radial-Tangential-Normal (RTN) Frame

2.5 Representations of Attitude

Attitude is a general term for any representation that relates one reference frame to

another. Spacecraft attitude, in the form that it is most often referred to, usually means

the Euler angles between the body frame and a local orbital reference frame, such as the

RTN frame used here. A complete representation of attitude that relates one reference

frame to another has three degrees of freedom.

2.5.1 Direction Cosine Matrix

A direction cosine matrix (DCM) is an orthonormal 3× 3 matrix that is used to directly

translate vectors from one coordinate frame to another. As in any representation of

attitude, the DCM also has three degrees of freedom because while there are nine elements

in the matrix, each of the three rows and each of the three columns is constrained to have

magnitude one. The advantage of a direction cosine matrix (or transformation matrix)

is that it can directly be used to transform vectors from one reference frame to another.
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The matrix TECI2RTN is one such DCM that will transform any vector in the ECI frame

into the RTN frame. Equation 2.23 demonstrates how to use TECI2RTN to transform a

vector. Note that the superscript on a vector describes which frame it is written in.

TECI2RTN =

[
r
r

(r× v)× r
‖ (r× v)× r‖

r× v
‖r× v‖

]
(2.22)

vRTN = TECI2RTN · vECI (2.23)

2.5.2 Euler Angles

Euler angles are the classic and most intuitive method of attitude information. A set of

Euler angles must be accompanied by a description of how they are defined. For example,

a 2-1-3 transformation would correspond to a rotation of the original second axis by φ,

followed by a rotation around the new first axis by θ, followed by a rotation of the new

third axis by ψ. The classic orbital elements Ω, i, and ω, depicted in Figure 2-3, are

actually a set of 3-1-3 Euler angles.

2.5.3 Quaternions

Quaternions, or Euler symmetric parameters, are a popular method of defining the at-

titude of a spacecraft. Euler determined that any transformation between two reference

frames can be accomplished by a single rotation by an angle Θ around a unit vector ê ε <3.

The four components of q are a representation of this rotation [9]. A quaternion vector

has three degrees of freedom since the vector is constrained to have magnitude one.

q =
[
q1 q2 q2 q4

]T
ε <4 (2.24)

‖q‖ =
√
q2
1 + q2

2 + q2
3 + q2

4 = 1 (2.25)

Of the representations of attitude, quaternions are used most often in spacecraft flight

computers because they do not suffer from a singularity when propagated forward in time
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and have computational advantages over Euler angles. However, a disadvantage is that

quaternions are very non-intuitive to people and are usually translated back into Euler

angles for engineering analysis.

2.5.4 Unit Vector Directions

Because of the nature of the example spacecraft, this research often deals with unit vector

pointing directions. Often, a rocket engine’s thrust may simply need to be pointed in

a certain direction. The rotation around that direction is irrelevant. If a vehicle is

commanded to point in a unit vector direction, the rotation angle around that vector

remains unconstrained. A unit vector direction has only two degrees of freedom.
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Chapter 3

Guidance and Control Techniques

This chapter introduces two key techniques for guidance and control that will be used

in later chapters to develop a guidance solution for the example spacecraft. The first

technique, GEM Steering, is an effective method that allows for a fixed ∆V thruster to

meet the mission requirements for a variety of ∆V requirements. The second technique,

the method of linear perturbations on a reference trajectory, is used to close the guidance

loop around a reference trajectory while allowing a vehicle to respond to uncertainties in

its dynamics and still reach its objective.

3.1 General Energy Management Steering

General energy management (GEM) steering is a guidance technique that involves dump-

ing of excess energy in order to put a vehicle on a particular trajectory. This is particularly

useful for a vehicle that has a fixed ∆Vcapability. Essentially, the objective of GEM is to

impart the change in velocity along some sort of curve so that the net ∆V imparted is

less than the capability of the vehicle. This is particularly useful for solid rocket engines

that do not have a capability for engine cut-off and have velocity requirements unknown

until immediately prior to the start of the mission.

Figure 3-1 shows the path on which ∆V is acquired in a two-dimensional ∆V plane.

The length of the curve ∆Vcapability matches the capability of the vehicle while the ∆Vnet

is reduced from the capability of the engine such that it matches the ∆Vrequired. GEM

45



Figure 3-1: Basic General Energy Management

steering can be used to impart the change in velocity along any curve.

3.1.1 GEM Steering: A Simple Example

Consider a GEM maneuver that follows the arc of a circle in a plane, such as the one

depicted in Figure 3-2. This will be referred to as a GEM-ARC maneuver. The ∆Vnet is

acquired along the x-axis as in Figure 3-2. Note that angle between the direction of thrust

and the ∆Vnet is known as θ. The total angular change in thrust direction during the

maneuver is known as ∆θ. This corresponds to the difference between θinitial and θfinal.

Equation 3.1 defines the ∆θ, θinitial, and θfinal for a GEM-ARC burn. It is assumed that

∆θ has a maximum value of 180◦.

θinitial =
1

2
∆θ = −θfinal for GEM steering along an arc (3.1)

Using geometry, it is possible to find relationships between the amount of reduction

in ∆V and the required θinitial for a GEM-ARC burn. First, if the ∆Vcapability is imparted

along the arc of a circle, then r is the radius of the circle and Equation 3.2 relates the two.

The length of the chord connecting the endpoints of the arc, ∆Vnet, is given in Equation

3.3.

∆Vcapability = 2rθinitial = r∆θ (3.2)
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Figure 3-2: GEM Steering along the Arc of a Circle

∆Vnet = 2r sin θinitial = 2r sin

(
∆θ

2

)
(3.3)

Therefore, by combining Equations 3.2 and 3.3, it is possible to define a relationship

relating ∆θ to the ratio between ∆Vnet and ∆Vcapability, which describes how much the

∆V can be reduced.

∆Vnet

∆Vcapability

=
sin
(

∆θ
2

)
(

∆θ
2

) (3.4)

The ratio on the left hand side of Equation 3.4 not only provides a reduction in the net

∆V delivered, but the inverse is the amount of “spare capacity” in ∆V that the spacecraft

has at the beginning of the burn. If the final ∆Vrequired changes slightly during the course

of the burn, there is an inherent robustness available and it may be possible to reach the

revised ∆Vrequired. Using the Taylor series expansion for sin θ, small values of ∆θ can be

solved for directly, as shown in Equation 3.7.
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∆Vnet

∆Vcapability

=

(
∆θ
2 − ∆θ3
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)
(

∆θ
2

) (3.5)

= 1− ∆θ2

24
(3.6)

2θinitial = ∆θ =

√
24

(
1− ∆Vnet

∆Vcapability

)
(3.7)

Once the required ∆V is known, the angle between the initial and final thrust direction

can be found. If there is a 180◦ change in thrust direction during the course of the burn,

the maximum reduction in ∆V is 31.8% or 1/π. If the desired ∆V is less than this value,

there are other methods available to make the maneuver feasible, primarily by adding

wait time prior to engine ignition. This is discussed more in Chapter 5. Reference [10]

provides additional insight into GEM steering.

3.1.2 Application of GEM to the Example Spacecraft

Implemented on a spacecraft, a GEM maneuver that imparts the ∆V along a curve would

involve some sort of attitude maneuvers during the burn, most likely with thrust vector

control. The example spacecraft detailed in Appendix A has two stages with a 10 second

stage separation in between. In order to impart velocity along the arc of the circle,

the spacecraft must maintain a linear relationship between the attitude rates and the

acceleration. For a two stage spacecraft, this may be difficult since the motion would

have to be stopped at the end of the first stage burn, the inertial attitude fixed during

the interstage time, and the rotation resumed at the start of the second burn. During

the burns, the attitude rates would continually have to be increased in order to maintain

the linear relationship between rates and acceleration. There are other types of GEM

maneuvers available.

Figure 3-3 considers one type of GEM maneuver which will be referred to as Constant

Rate GEM (GEM-CR). During this maneuver, a constant attitude rate is maintained.
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Figure 3-3: GEM Steering for Example Spacecraft with Constant Attitude Rates

Compare Figure 3-3 with Figure 3-2. Note that they both achieve a 1/6th reduction in

velocity (from 3.0 km/sec to 2.5 km/sec). The dogleg in the ∆V space apparent in Figure

3-3 is due to the continued rotation during the interstage time.

Figure 3-4 compares GEM-ARC and GEM-CR. The acceleration profiles are identical,

but GEM-ARC requires instantaneous changes in attitude rates where otherwise the two

maneuvers accomplish the same goal.

Note that there are an infinite number of possible GEM maneuvers. GEM-ARC was

shown because it is possible to find a mathematical expression that directly relates the

burn to the reduction of ∆V. GEM-CR was introduced because it may be a logical starting

point for the vehicle under consideration since a constant rate of attitude change imposes

less stress on the attitude control system. Many additional variations of GEM are possible.

3.1.3 Closed-Loop Lambert GEM Guidance

Close-loop Lambert GEM is a method that dynamically determines the thrust direction

based on the Lambert ∆V required to arrive at the rendezvous point and the current
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Figure 3-4: Comparison of GEM-Arc and GEM-CR for the Example Spacecraft
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available ∆V based on the expected thrust impulse. Historically, variations of Lambert

GEM have formed the basic components of closed loop guidance for solid rocket motors.

Consider a scenario where the spacecraft has current position r and velocity v at time

t. At some time trendezvous in the future, it must be at rrendezvous. The ∆vinstant that

will place the spacecraft on a transfer orbit taking it through the rendezvous point at the

rendezvous time is given by the Lambert problem, discussed in Section 2.2.2. Equation

3.8 results from rearranging Equation 2.18.

∆vinstant(t) = FLambert (r, rrendezvous, (trendezvous − t)) (3.8)

‖∆vremaining‖ =

∫ tburnout

t
‖athrust(t)‖dt (3.9)

Once the ∆vinstant is solved with the Lambert problem, the next step is to compare

that to the remaining acceleration impulse from the engines, or ‖∆vavailable‖, given in

Equation 3.9. Comparing those two values, it is possible to determine the thrust direction,

îthrust(t) which is an angle θ(t) from the vector ∆vinstant.

θ(t) = F (∆vinstant, ‖∆vremaining‖) (3.10)

When doing this, it is desirable to have some simplifying assumptions about the GEM

profile, such as that it follows the arc of a circle. This way, Equation 3.4 can be used

to solve for Equation 3.10. Note that ∆Vavailable is really the remaining acceleration

impulse. The algorithm depends only on the amount of remaining ∆V compared to the

instantaneous ∆V required.

Equations 3.8, 3.9, and 3.10 form the algorithm for Lambert GEM or “closed-loop”

Lambert GEM as it will be referred to here. While it will continuously update the thrust

direction to take the vehicle close to the rendezvous point, closed-loop Lambert GEM does

not automatically place the first stage on a reentry trajectory. Lambert GEM provides

a starting point, but analysis has shown that accuracy can be much improved using a

new method. Chapter 8 includes performance results from the closed-loop Lambert GEM

algorithm compared to the new algorithm.
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3.2 Method of Linear Perturbations upon a Refer-

ence Trajectory

The method of linear perturbations upon a reference trajectory is a proven method of

closed loop guidance for vehicles with complex dynamics that can be modeled. The

method is commonly used on aerospace vehicles to continually update the planned control

inputs in order to reach an objective while responding to uncertainties.

Suppose the objective is to reach a given state specified as robjective. This thesis

considers the objective of minimizing the error in position at the specified final time

tf . The first thing that is required is a reference or nominal trajectory. It is presumed

that based on the dynamics models this reference trajectory is expected to place r(tf )

near robjective. Since the method of linear perturbations will respond to uncertainties,

approximate methods can be used to find an initial reference trajectory.

There are a certain number of control inputs c1 · · · cn that fully define the vehicle’s

planned set of commands to the control system so that the vehicle will achieve this

reference trajectory. The vector of control variables that specify the reference trajectory

are denoted as cref . According to the dynamics model, this set of reference trajectory

control inputs is expected to drive the state to rf (cref ) at tf . Therefore the expected

error from this reference trajectory given by cref is Equation 3.11.

e(cref ) = rf (cref )− robjective (3.11)

Let ∆c be a modification to the reference set of control inputs cref . The error resulting

from ∆c is defined in Equation 3.12 as e(cref + ∆c).

e(cref + ∆c) = rf (cref + ∆c)− robjective (3.12)

The objective of the guidance algorithm is to find the reference solution cref and

subsequent modifications ∆c that minimize the expected error e(cref + ∆c). In order

to design the algorithm, information is needed about the effect of each control variable

on the output. This is done by assuming that small perturbations in the control inputs
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result in linear variations in the final position rf .

3.2.1 Estimating the Partial Derivatives of the Control Inputs

The next step is to estimate the partial derivatives of the control variables with respect

to final state rf . The expected final state when using the reference trajectory control

variables is rf (cref ) and is determined by running a nonlinear simulation of the trajectory

using the reference control variables. Each control variable is perturbed by a small amount

∆cn and a nonlinear simulation is run in order to determine the change in final position

∆rf caused by the control input perturbation ∆cn.

∆rf = rf (cref + ∆cn)− rf (cref ) (3.13)

If each ∆cn is small, then it can be assumed to have a linear influence on rf (cref +∆cn).

Using this assumption, Equation 3.14 is the estimate of the partial derivative of rf with

respect to each control variable cn.

∂r

∂cn

∣∣∣∣
c=cref

=
rf (cref + ∆cn)− rf (cref )

∆cn
(3.14)

Suppose there are n control variables c1 · · · cn and m dimensions of the state rf and

error e. Then the partial derivatives of each control variable with respect to each com-

ponent of rf can be put in an m × n matrix D which is a vector derivative of rf by c.

If perturbations of the control variables are kept in the linear range, then Equation 3.15

relates the any possible final state rf (cref + ∆c) to the reference final state rf (cref ).

rf (cref + ∆c) = rf (cref ) +
[
∂r
∂c1

· · · ∂r
∂cn

]
c=cref


∆c1

...

∆cn

 = rf (cref ) + D(cref ) ·∆c

(3.15)
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3.2.2 Solving for the New Control Variables

The purpose of the method of linear perturbations upon a reference trajectory is to make

minor modifications to the set of planned control inputs at every guidance step, continually

compensating for dynamics uncertainties, such that the vehicle arrives at robjective. The

goal is to find an equation that will, at each time step, solve for the changes in the control

inputs in order to either minimize the expected value of e or drive the expected value of

e to 0 with the most effective combination of control inputs. The exact process depends

on the relative number of n control variables compared to the m states in robjective.

First, suppose that m > n. That means there are less control variables than states.

The objective should be to find the ∆c that minimizes the expected error e(cref + ∆c).

minimize J := e(cref + ∆c)Te(cref + ∆c)

By substituting Equation 3.12 and 3.15 into the above optimization problem, the

following optimization problem results.

minimize J := (∆c)TDTD(∆c) + 2(∆c)TDTe(cref ) + e(cref )
Te(cref )

It is possible to form a simple least squares solution to solve for a linear combination

of control inputs ∆c that will minimize the expected error, e. For this case, the solution

for ∆c is given in Equation 3.16 [5].


∆c1

...

∆cn


cmd

= ∆ccmd = −
(
DTD

)−1
DTe(cref ) (3.16)

Next, suppose that m = n and that each of the partial derivatives ∂r/∂cn are linearly

independent of one another. In this case, the control inputs that drive the expected

error to zero can be solved directly with an inverse of the matrix of partial derivatives,
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as shown in Equation 3.17. If there is uncertainty about the linear independence of the

control inputs, it may be more advisable to use equation 3.16.


∆c1

...

∆cn


cmd

= ∆c = D−1e(cref ) (3.17)

Finally, consider the scenario where m < n with at least m independent control

variables. For this case, there are enough control variables to drive any expected error

to zero at each guidance step even if not every single control is used. One solution

would be to leave some control variables unchanged so that m = n and use Equation

3.17 or 3.16. However, it is probably more desirable to include all control variables and

create an algorithm that takes into consideration the relative preferences of certain control

variables over others. Consider a diagonal weighting matrix W shown in Equation 3.18.

This matrix is specified by the engineer to impose costs associated with certain control

variables. For instance, a certain vehicle may have a control variable A that uses fuel of

which there is a finite supply while another control variable B is comes at no fuel cost.

For this problem, the W matrix would be used to show a preference of control variable

B over control variable A.

W =


wc1 0 0

0
. . . 0

0 0 wc1

 (3.18)

Each of the positive values wc1 · · ·wcn in Equation 3.18 is a penalty on changes to that

control input. The smaller wcn is, the more desirable that control input is relative to the

others. This is helpful if some of the control inputs come at the cost of limited resources

or could increase some sort of risk.

Given the weighting matrix of Equation 3.18, the choice of control variables can then be

formulated into a quadratic optimization problem. Equation 3.15 becomes a constraint.

The problem is find a ∆ccmd with minimum control cost inside the feasible set of of

possible ∆c that drive the expected error to zero e(cref + ∆c).
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minimize J := (∆c)TW(∆c)

such that D∆c + e(cref ) = 0

The Karush-Kuhn-Tucker sufficient conditions for optimality for this quadratic pro-

gram are expressed in equation 3.19 [3]. Note that the vector λ is the Lagrange multiplier.

 W(∆c) + DTλ = 0

D(∆c) = e
(3.19)

By putting Equation 3.19 into matrix form, the optimal perturbations to the control

variables, ∆ccmd, are easily determined and given in Equation 3.20.


∆c1

...

∆cn


cmd

= ∆c =
[

In×n 0n×m

] W DT

D 0m×m

−1  0n×1

e

 (3.20)

3.2.3 Implementation for Vehicle Guidance

So far, there has been little discussion on how this would be implemented on vehicle or

what exactly the “nonlinear simulation” entails. At every guidance step, there is a full

computer simulation of the remaining portion of the trajectory. The inputs to this simu-

lation are the current full state vector, given by the vehicle’s navigation system, and the

guidance reference trajectory defined by cref . Note that cref has been updated to include

the control input perturbation solutions ∆ccmd for all previous steps. The simulation

runs and predicts where the vehicle will be at time tf if there are no modifications to the

control inputs. Then for each control input cn, a nonlinear simulation is run with a small

perturbation ∆cn on cn in order to determine the final position when that control variable

is perturbed, or rf (cref +∆cn). This is used to estimate the partial derivatives with Equa-

tion 3.14. Then either Equation 3.16, 3.17, or 3.20 is used to determine the modifications
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to the control inputs that define a new reference trajectory. Chapter 6 applies the method

of linear perturbations on a reference trajectory to the example spacecraft and mission.
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Chapter 4

Delta Velocity and Perigee Analysis

The spacecraft’s fixed ∆V capability and the transfer orbit perigee constraints are two

aspects of this problem which differentiate it from a more traditional orbital rendezvous

problem. By exploring and manipulating many of the traditional astrodynamic rela-

tionships found in Chapter 2, this chapter derives mathematical relationships that are

uniquely useful to the guidance problem posed by this thesis. When these relationships

are illustrated through plots, they develop intuition for the problem and lead toward its

solution. In addition, specific mathematical relationships will ultimately be implemented

in guidance algorithms.

The basic idea of this chapter is to establish an understanding of how the net direction

of thrust direction relates to the ultimate perigee altitude. In straightforward terms, it

would be helpful to know which directions not to “aim” in order to meet the re-entry

constraints. This will be accomplished using analytic methods. This chapter considers

the two-body problem and a spacecraft with an instantaneous ∆V. The example spacecraft

has a non-instantaneous burn, but the assumption of instantaneous burn is justified.

4.1 Relationship between Perigee and Velocity Changes

Initially, the orbiting spacecraft has position r0 and velocity v0. Then at that particular

instant, a vector change in velocity, ∆v, changes the trajectory and places it into a new

transfer orbit around the earth. The particular characteristics of this new transfer orbit
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are of interest. Specifically, it is important to understand how ∆v contributes to the

radius of perigee rp. The velocity change is defined in Equation 4.1.

v = v0 + ∆v (4.1)

If the spacecraft was originally in a circular orbit, then r, a, p, rp, and ra are all

equivalent. However, after the maneuver, the new semi major axis can be derived by

rearranging the vis-viva integral of Equation 2.11 to form Equation 4.2. The scalar ra-

dius r is unchanged by the velocity impulse, while v is determined from Equation 4.1.

Eccentricity e is simply the magnitude of the eccentricity vector e.

a =
µr

2µ− rv2
(4.2)

e =
√

eTe (4.3)

Combining Equation 2.5, 4.2, and 4.3 results in a representation of radius of perigee in

terms of the post-impulse velocity vector v in Equation 4.4. With Equation 4.1 allows the

relationship between rp and ∆v can be determined for an arbitrary choice of coordinate

frames.

rp = a(1−e) =
µr

2µ− rv2

1−

√(
1

µ
v × (r× v)− 1

r
r

)T(
1

µ
v × (r× v)− 1

r
r

) (4.4)

4.1.1 Expressing Velocity in the RTN Frame

Section 2.4.2 introduced the Radial-Tangential-Normal reference frame. While Equation

4.4 was developed without regard to reference frame, using a carefully chosen reference

frame can greatly aid the understanding of graphical output. Here, the initial parking

orbit position r0 and velocity v0 are used to define the RTN coordinate system that will

be used to analyze the post-impulse total velocity v. Assuming that the parking orbit is

circular, the following relationships will hold.
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v = v0 + ∆v =


0

v0

0

+


∆vR

∆vT

∆vN

 (4.5)

v2
0 =

µ

r0
for a circular orbit (4.6)

r =


r0

0

0

 (4.7)

4.1.2 General Result of Large Orbital Velocity Changes

The two body equation of motion dictates that all objects in orbit will remain in an

invariant orbit. Given a particular spacecraft’s position and velocity, or alternatively, its

classical orbital elements, its current position as well as all past and future positions can

be determined. If the orbit is circular or elliptic, the spacecraft will repeat itself around

the same track again and again. The important question is understanding what these

changes in velocity mean for the resulting orbit.

A non-zero ∆v will simply place the spacecraft in a new orbit. If the velocities

involved are not large enough to place the spacecraft in a parabolic or hyperbolic orbit,

it will return the same place where the initial ∆v was imparted. Thus, r0 will be a point

in the new transfer orbit.

An illustration of this is included in Figure 4-1. In this case, the satellite is initially

following a circular orbit. If, while the spacecraft is located at position r0, an impulse

∆v1 is applied in the direction of the current velocity such that ∆v1T
= 1km/sec, it will

enter a new transfer orbit. The perigee altitude of the new orbit is 500 km, identical to the

original altitude of the spacecraft. In the second scenario, when the spacecraft is located

at r0, a ∆v2 is applied in the direction opposite (retro) to the velocity vector such that

∆v2T
= −1km/sec. In this case, the apogee is now located at r0 and the apogee altitude is

the altitude of the original circular orbit, 500 km. Notice that the perigee altitude of this
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Figure 4-1: Graphical Results of Large Changes in Orbital Velocity

new elliptical orbit is negative, meaning below the earth’s surface. For the third example,

∆v3, the burn is in the local vertical (radial) direction such that ∆v3R
= 1km/sec and

results in changing both the perigee and apogee.

The critical observation is that no matter what change in velocity is imparted, two

body motion dictates that the new orbit will include the point at which the ∆v was

imparted (or, if the ∆v is non-instantaneous, the point where engine burnout occurs).

Therefore, the perigee of the new orbit must be at or lower than the original orbit radius

and the apogee of the new orbit must be at or higher than the original orbit radius.

In real low-earth orbit scenarios, there are disturbing forces which break the two
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Orbit a e hp ha

Initial Circular 6878 km 0 500 km 500 km
After ∆v1 9553 km 0.280 500 km 5849 km
After ∆v2 5523 km 0.245 -2211 km 500 km
After ∆v3 6999 km 0.131 -298 km 1540 km

Table 4.1: Numerical Results of Large Changes in Orbital Velocity

body approximation and result in the spacecraft not returning to r0. Depending on the

orbital inclination, the J2 affect applies a twisting motion to the orbit plane, and thus

the spacecraft will not reach r0 after one revolution, but rather another point at the same

altitude and latitude, but a different longitude. Another effect ignored by the two body

approximation is the firmness of the earth. Certainly, after ∆v2, the spacecraft would

fail to return to r0 because its trajectory would have taken it to a high speed impact with

the earth’s surface.

It turns out, that the examples of ∆v1 and ∆v2 are actually the two examples which

maximize apogee and minimize perigee, respectively. For all ‖∆v‖ = 1, the perigee and

apogee values will be between those two extremes, including those that result from ∆v3,

which is verified in Table 4.1.

4.1.3 Graphical Representation of Perigee and ∆V

The previous section discussed the impact of a few specific ∆v’s on the new transfer

orbit. The next step is to use Equation 4.4 to create a plot showing the general impact

of changes in velocity upon perigee altitude.

Figure 4-2 shows contours of different perigee altitudes that result from ∆v’s imparted

in the Tangential-Radial Plane, which is also the orbital plane of the initial parking orbit.

The three sample transfers of Figure 4-1 and Table 4.1 all occur in this plane. It is evident

that a ∆v in the positive tangential (or velocity vector) direction cannot move the perigee

altitude higher than the original orbit. However, a ∆v in the negative tangential direction

reduces the perigee altitude very quickly. This aligns with the astrodynamicist’s intuition,

because in general planned spacecraft maneuvers leading to reentry involve a burn in the

opposite direction of the velocity vector. Figure 4-2 also illustrates that burns with radial
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Figure 4-2: Contours of Perigee Altitude For R-T Components of ∆v

direction components tend to reduce the perigee altitude.

Figure 4-3 shows a similar plot in the Tangential-Normal plane. The characteristics

along the tangential axis match up with Figure 4-2. However, burns with normal com-

ponents will always change the orbit plane of the satellite, and may change neither the

perigee or apogee, depending on the relative tangential component.

Figure 4-4 addresses how this affects the example spacecraft. The spacecraft can

impart a maximum ∆V of 3.0 km/sec and this results in a sphere of maximum reach (or

circle if it is a two-dimensional cross section). Next, since there is a re-entry constraint,

there is really no distinction between a perigee just below the earth’s surface and one that

it is a few thousand kilometers below the earth’s surface. All would meet the constraint.

Thus, all perigee altitudes under the earth’s surface are colored in green. There is a

band of perigee altitudes above this that would inevitably lead to re-entry because of the

cumulative impact of atmospheric drag. This area, assumed to be up to 100 km, is shaded

in yellow because of the very high probably that re-entry would result. Perigee altitudes

above this are shaded red because they generally would not meet the re-entry constraint

for this mission. Figure 4-4 proves to be very useful if it is depicted how it might be used
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Figure 4-3: Contours of Perigee Altitude For T-N Components of ∆v

Figure 4-4: Perigee and R-T Components of ∆v, Example Spacecraft
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Figure 4-5: Perigee and R-T Components of ∆v, Example Spacecraft and GEM Maneuver

to choose particular general energy management paths.

Figure 4-5 demonstrates how the plot of ∆v and perigee can be used to help solve

this problem. A sample GEM-ARC maneuver has been overlaid upon Figure 4-4. In

order to reach the desired ∆vnet with the fixed ∆vcapability of 3.0 km/sec, there are two

possible routes in the T-R ∆v plane that can accomplish the mission. If the desired

∆vnet is already determined, the approximate reentry characteristics of the second stage

and payload are predetermined. However, since the spacecraft is a two stage vehicle and

the first stage has a reentry constraint as well, it is of importance where along the GEM

arc the first stage separation occurs. For our example spacecraft, it is shown as the unfilled

square in Figure 4-5. There are two possible GEM burns shown here as well as many more
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that occur outside the T-R plane. As is evident here, one of the GEM maneuvers results

in a perigee that would meet the constraint to be on a reentry trajectory, while the other

clearly does not.

The objective would be to find out which of these many GEM maneuvers would

allow the spacecraft to reach ∆vnet with a perigee that will lead to reentry. While the

magnitude of the ∆vnet already dictates the ∆θ of that GEM maneuver, the plane of

that GEM maneuver can be chosen at will. A later section will develop a method to be

used with the mean point of first stage separation, shown in Figure 4-5, to automatically

minimize perigee. But first, the relationship between perigee and ∆v will continue to be

explored.

4.2 Hyperbolic Locus of Constant Perigee

Beginning with Figure 4-2, many of the figures in this chapter show resulting perigees for

∆v components in the Tangential-Radial plane. Those curves of empirically determined

constant perigee look strikingly close to hyperbolic curves. Thus, in this section, the

mathematical relationships are explored in order to determine if the T-R plane produces

hyperbolic curves of constant perigee. If they do, it may be possible to easily establish

the three dimensional surfaces of constant perigee.

4.2.1 Mathematical Derivation of the Hyperbolic Locus of Con-

stant Perigee

In this section, the preceding equations will be manipulated in order to arrive at a closed-

form equation that define curves of constant perigee. The objective is to rearrange the

equations relating ∆v and perigee in order to arrive at the general equation for a hyper-

bola. Suppose that ∆v is constrained to the T-R plane (it has no normal component).

Then by combining Equations 2.7, 4.5, and 4.7, the angular momentum h of the the

resulting orbit is given in Equation 4.8.
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h = r0(v0 + ∆vT ) (4.8)

With Equation 2.8 and Equation 4.8 the parameter p of the transfer orbit is found to

be Equation 4.9.

p =
r2
0(v0 + ∆vT )2

µ
(4.9)

Equation 4.10 for the inverse of semi-major axis a of the transfer orbit results from

the vis-viva relationship, Equation 2.11.

1

a
=

2

r0
− (v0 + ∆vT )2 + (∆vR)2

µ
(4.10)

By combining the relationships between a, e, p, and rp, stated in Equations 2.5 and 2.4,

the following relations are developed.

rp

a
− 1 = e (4.11)(rp

a
− 1
)2

= e2 (4.12)

r2
p

a2
− 2rp

a
+ 1 = 1− p

a
(4.13)

r2
p

a
+ p− 2rp = 0 (4.14)

The next step is combine Equations 4.9, 4.10, 4.14 and simplify.

r2
p

(
2

r0
− (v0 + ∆vT )2 + (∆vR)2

µ

)
+
r2
0(v0 + ∆vT )2

µ
= 2rp(

r2
0

µ
−
r2
p

µ

)
(v0 + ∆vT )2 −

r2
p

µ

(
∆vR)2

)
= 2rp −

2r2
p

r0(
r2
0 − r2

p

µ

)
(v0 + ∆vT )2 +

r2
p

µ

(
∆v2

R

)
=

2 (r0 − rp) rp

r0
(4.15)

The purpose of the last several steps was to rearrange the equations relating rp and
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∆v into a form recognizable as the equation for a hyperbola.

Basic Equation for a Hyperbola

Equation 4.16 is the basic form of a hyperbola in cartesian coordinates that opens to the

left and right with origin at (x, y) = (hhyp, khyp).

(x− hhyp)
2

a2
hyp

− (y − khyp)
2

b2hyp

= 1 (4.16)

Equation 4.15 can then be rearranged to the conventional form for a hyperbola in 4.16.

The result is 4.17.

(∆vT − v0)
2

2µ
(

1
r0
− 1

r0+rp

) − (∆vR)2

2µ
(

1
rp
− 1

r0

) = 1 (4.17)

The next step would be to plot various curves of constant perigee against the empiri-

cally determined shaded areas of Figure 4-4. The result is Figure 4-6. It is evident that

the lines of constant perigee determined by putting various values for rp into Equation

4.17 match up precisely with the shaded areas that were colored according to 4.4.

4.3 Exploring the Relationship between Perigee and

∆V

Until this point, only two-dimensional slices of three-dimensional ∆v space have been

considered when trying to understand the impact of ∆v upon perigee altitude. At this

point, the three dimensional surfaces of constant perigee will be plotted to give the reader

a fundamental understanding of the impact of the perigee constraint and intuition for its

three-dimensional impact.

4.3.1 Three Dimensional Surfaces of Constant Perigee

Figures 4-7 and 4-8 show the three dimensional surface corresponding to a perigee altitude

of 0 km (the earth’s surface). The partially transparent sphere corresponds to the sphere

69



Figure 4-6: Hyperbolic Loci of Constant Perigee

70



Figure 4-7: Surface of Constant Perigee

of possible post-burn velocity vectors emanating out from v0 with ‖∆v‖ = 3.0. This 3D

sphere corresponds to the 2D circle that has been shown in previous plots in this chapter.

Note that the origin of the coordinate system in Figures 4-7 and 4-8 is at v = 0 and not

at ∆v = 0 like previous plots.

Figure 4-7 is a side view of the surfaces of zero perigee and maximum reach of ∆v.

Since it only displays the Tangential and Radial components, its similarity to Figure 4-4

verifies that it was correctly created.

Figure 4-8 shows the same plot but from an angle that shows the characteristics of the

Normal component of ∆v. This figure makes it apparent that perigee altitude depends

most heavily on the tangential component of ∆v, with ∆v’s that are generally retro

to the velocity vector significantly reducing perigee and ∆v’s generally aligned with the

velocity vector failing to reduce perigee below the earth’s surface. It is also visible that

with a very large instantaneous ∆v, specifically ∆vT = −2v0, it would be possible to

completely reverse the direction while remaining in the same orbital path.

4.4 Gradient of Perigee with Respect to Velocity

The previous sections show the graphical relationship between perigee and the components

of ∆v in the radial-tangential plane. Figure 4-5 also suggests that the gradient of perigee
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Figure 4-8: Three dimensional Surface of Constant Perigee
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with respect to ∆v could be used to minimize the perigee of the first stage. Here, a

closed-form equation for the gradient of radius of perigee ∇rp with respect to the vector

quantity of ∆v is developed. In future chapters, this will provide a valuable tool to

automatically minimize the first stage perigee.

∇rp =
∂rp

∂∆v
=

∂a

∂∆v
(1− e)− a

∂e

∂∆v
(4.18)

The gradient operator is simply a partial derivative. Equation 4.18 results from taking

the partial derivative of Equation 2.5. A closed form solution requires an expression for a

and e, which is available in Equations 4.2, and 4.3. It also requires the partial derivatives

of those quantities with respect to ∆v be expressed in a closed form solution.

4.4.1 Partial Derivative of Semi-Major Axis with respect to ∆V

Equation 4.18 contains two partial derivatives that so far have not been derived, including

the partial of semi-major axis with respect to ∆v. In this section, this partial is derived.

The derivation is started by using the chain rule to get 4.19, which shows three distinct

partial derivatives that must determined.

∂a

∂∆v
=

(
∂a

∂v

)(
∂v

∂v

)(
∂v

∂∆v

)
(4.19)

Next, Equation 4.2 is differentiated with respect to v to find Equation 4.20

∂a

∂v
=

2µr2v

(2µ− rv2)2 (4.20)

Equation 4.21 is a simple result of vector calculus. The partial derivative of the

magnitude of any vector with respect to the vector is the transposed unit direction along

the vector.

∂v

∂v
=

vT

√
vTv

=
vT

v
(4.21)

Differentiating Equation 4.1 results in Equation 4.22. This is also a simple result of

vector calculus.
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∂v

∂∆v
= I3×3 (4.22)

In this section, the partial derivative of a with respect to ∆v was derived. Before

calculating ∇rp with Equation 4.18, ∂a/∂∆v is determined by using Equations 4.19,

4.20, 4.21, and 4.22.

4.4.2 Partial Derivative of Eccentricity with respect to ∆V

Now that the first unknown quantity from Equation 4.18 has been determined, the second

partial derivative will be found. The derivation once again begins by using the chain rule,

this time on ∂e/∂∆v. The resulting relation is Equation 4.24. There are now three partial

derivatives that must be solved for.

∂e

∂∆v
=

(
∂e

∂e

)(
∂e

∂v

)(
∂v

∂∆v

)
(4.23)

∂e

∂e
=

eT

√
eTe

=
eT

e
(4.24)

Equation 4.24 results from differentiating Equation 4.3. Note that Equation 4.24 has

a singularity when calculated at e = 0, which happens at ∆v = 0 starting from a circular

orbit. The singularity exists because there is no gradient (or direction of increasing

perigee) at where perigee is already at its maximum value. Using the expansion of the

triple vector product [1], Equation 2.10 becomes Equation 4.25. Differentiation produces

Equation 4.26, which can be rearranged into Equation 4.27 when the RTN frame is being

used to represent velocity.
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e =

(
1

µ

)(
r
(
vTv

)
− v

(
vTr

)
− 1

r
r

)
(4.25)

∂e

∂v
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(
1

µ
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∂
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(
r
(
vTv

)
− v

(
vTr

)
− 1

r
r

)
=

(
1

µ

)(
2rvT − I3×3v

Tr− vrT
)

(4.26)

=
1

µ


0 2r0(v0 + ∆vT ) 2r0∆vN

−r0(v0 + ∆vT ) −r0∆vR 0

−r0∆vN 0 −r0∆vR

 (4.27)

Equation 4.27 illustrates that by choosing the correct frame and assuming that the

spacecraft begins from a circular orbit, ∂e/∂v readily simplifies. The last partial derivative

in Equation 4.23, ∂v/∂∆v, was already given in Equation 4.22.

This section determined the second of the two partial derivatives contained in Equation

4.18. Now all quantities required to calculate ∇rp(∆v) have been determined. The next

section collects these different relationships into an algorithm to calculate ∇rp(∆v).

4.4.3 Algorithm for Finding Gradient of Perigee

The applicable equations derived in this section have been gathered in Equation 4.28

as a quick reference for calculating ∇rp(∆v). Note that there is a constraint upon the

components of ∆v that reflects that there is no direction of increasing perigee at points

where perigee is already 500 km.



v = v0 + ∆v

a =
µr

2µ− rv2

e =
(

1
µ

)(
r
(
vTv

)
− v

(
vTr

)
− 1
r r
)

∂a
∂∆v

=
2µr2(

2µ− rv2
)2vT

∂e
∂∆v

=
(
eT

e

)(
1
µ

) (
2rvT − I3×3v

Tr− vrT
)

∇rp = ∂a
∂∆v

(1− e)− a ∂e
∂∆v

(4.28)
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constrained by e 6= 0 ⇒∆v 6= 0

Figure 4-9 is a graphical depiction of the direction of the gradient of perigee with

respect to ∆v. The gradient is orthogonal to the contours of constant perigee, which is

consistent with expectations. Equation 4.28 has also been empirically verified by esti-

mating the partial derivative of rp with respect to ∆v using perturbation methods. This

confirms that there were no errors in the series of derivations that led to Equation 4.28.

It is also evident that the contours of constant perigee of Figure 4-6 are perpendicular to

the gradients of perigee shown in figure 4-9. This verifies one of the fundamental concepts

of multi-variable calculus for this particular example.

4.4.4 Application of Gradient of Perigee to the Mission

It turns out that an approximation of the GEM maneuver plane and direction that min-

imizes first stage separation, as discussed in Section 4.1.3, can be found with the closed

form solution of the the gradient of perigee with respect to the components of ∆v. Figure

4-5 shows an example of the mean point for first stage separation, or ∆vMPFSS. This

point is along the vector ∆vnet at the point corresponding to the fraction of ∆V imparted

by the first stage compared to the total vehicle ∆V.

When this gradient of perigee is calculated at ∆vMPFSS, it returns the vector direction

of fastest increasing perigee (opposite the direction fastest decreasing perigee). Chapter

6 explains how this can be used to define a plane of maneuver. If ∆vnet defines one axis

of the plane of maneuver, then ∇rp(∆vMPFSS) can be used to define the axis in such a

way that the perigee of the first stage is minimum for all possible planes of maneuver that

include ∆vnet. Chapter 6 covers this in greater detail.

4.5 Concluding Thoughts on Perigee and ∆V

The purpose of this chapter was to find the impact that different ∆v’s have on the reentry

constraint. The figures shown help to illustrate what three-dimensional magnitude and
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Figure 4-9: Gradient Field of Perigee With Respect to ∆v
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direction combinations of ∆vnet generally cause the spacecraft to fail to meet the re-entry

requirement while also showing the directions of ∆vnet that do meet the requirement. In

Chapter 5, this is put to use to determine which of many transfer orbit paths should be

followed in order to reach the objective under the mission constraints.

The last section developed a mathematical representation for the gradient of perigee.

By using the direction of gradient of perigee in ∆v-space, the plane and direction of

the GEM burn can be determined in order to minimize perigee. Chapter 6 takes this

equation for ∇rp and puts it to use in an method to determine the most favorable plane

of maneuver for a spacecraft’s burn.
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Chapter 5

Trajectory Boundary Condition

Selection

This section addresses an important part of the overall problem posed by this thesis, which

is referred to here as Trajectory Boundary Condition Selection (TBCS). The purpose is to

determine the ignition time (tignition) and the rendezvous time (trendezvous). The ignition

point and rendezvous point originally lie on two different trajectories. After fixing tignition

and trendezvous, the boundary condition positions and the time of flight of the transfer is

given, and the resulting transfer orbit is determined by the Lambert problem.

A similar astrodynamics problem given much attention in the literature is the targeting

problem, which is typically concerned with minimizing ∆V for a particular maneuver. As

a result of the example spacecraft and the mission considered here, minimizing ∆V is of no

use. Instead, a cost function would consider other properties of a particular transfer orbit

when seeking out the “best” trajectory. This Chapter also explores those relationships

and draws general conclusions useful in understanding the problem.

5.1 Exploring the Problem

The first step in solving the TBCS optimization problem over two variables is to develop

an understanding of the trade space. This is done by calculating a representative subset

of the set of feasible transfer orbits, each one corresponding to a distinct tignition and
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Figure 5-1: Exploring TBCS, Orbital Side View

trendezvous. The range of possible options can then be illustrated.

5.1.1 Sample Set of Initial Conditions

Consider a set of initial conditions that correspond to the example spacecraft at a 500

km circular orbit and a Keplerian trajectory in a coplanar elliptical orbit traveling in the

opposite direction. Such a trajectory is shown in Figure 5-1, with the satellite in blue

and the Keplerian trajectory in red. This Keplerian trajectory has a perigee altitude

of approximately -2800 km and an apogee altitude of 1200 km. The relative geometry

dictates that the rendezvous point occurs in the region near the apogee of this Keplerian

trajectory. The initial position of each object is indicated in Figure 5-1 by t0, which is the

earliest possible time that the spacecraft can ignite its engine and begin the rendezvous

maneuver. These initial conditions and additional numerical details are given in Appendix

B.

For these two trajectories, there are any number of possible transfer orbits connecting

them. Suppose that these transfer orbits are constrained such they originate on the blue

trajectory and terminate on the point on the red trajectory corresponding to the transfer

time. Determining the transfer orbit trajectory simply requires solving the Lambert

problem. Considering only transfer orbits that have an instantaneous ∆V less than the

3.0 km/sec available to the example spacecraft and that originate or terminate at 5 second

intervals along the two trajectories. For these initial conditions, there are 3218 possible
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Figure 5-2: Exploring TBCS, ∆V and Perigee Contour Plot

transfer orbits. The path of every 100th transfer orbit has been plotted in Figure 5-1 as a

green trajectory, with the position at ignition and rendezvous shown as black dots. The

earliest and latest possible ignition and rendezvous points are also indicated in the figure.

Since the original satellite and target orbits are coplanar, the transfer orbits also lie in

that plane. Since the ∆v’s lie in the original orbit plane and all the ∆vN components are

zero, the radial and tangential components of all 3218 transfers can be plotted on the ∆v

and perigee contour plots described in depth in Chapter 4. These are depicted in Figure

5-2.

For the particular initial conditions under consideration, it is evident that there is

a wide variety of possible ∆v directions for transfer orbits. Some would lead to rapid

reentry while some clearly do not lower the perigee significantly and have poor reentry
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Property Minimum Value Maximum Value

Perigee Altitude (km) -3876 500
Apogee Altitude (km) 1187 217976
Ignition Time (sec) 0 455
Rendezvous Time (sec) 565 850
Magnitude of ∆V (km/sec) 0.86 3.00
Relative Velocity (km/sec) 10.92 15.73
Effective Plane Change (deg) 0.00 0.00

Table 5.1: Exploring TBCS, Bounds of Properties for 3218 Transfer Orbits

characteristics. Similarly, the magnitude ‖∆v‖ also varies substantially. Note that a

discrete subset of all possible transfer orbits are shown in Figure 5-2 and that the space

between the existing ∆v’s in the ∆v T-R plane would also lead to transfer orbits with

slightly different ignition and rendezvous times than the points in the neighborhood.

Each of the 3218 possible transfer orbits have different characteristics including those

mentioned so far such as perigee altitude or rendezvous time and others that may be of

interest such as angle of effective orbital plane change and apogee altitude. Table 5.1.1

summarizes the minimum and maximum values for various properties that result from

the family of transfer orbits. Note that one transfer would raise the apogee to 35 earth

radii.

5.1.2 Constraining Ignition Time

So far, it is clear that there are a great deal of transfer orbits with a wide variety of

characteristics to pick from. There are a few key generalizations that can be made about

the problem to develop intuition. Figure 5-3 illustrates how fixing the ignition time

changes the problem. In this instance, the ignition time tignition has been fixed to time t0,

which is the time for which the initial conditions r0 and v0 are defined.

The horizontal axis is the transfer time as well as the rendezvous time since tignition = 0.

Understandably, as the transfer times goes to zero, the ‖∆vrequired‖ goes toward infinity.

As transfer time increases, the ‖∆vrequired‖ gradually decreases until it reaches a minimum

and then begins to increase again. It must dip below the level of ‖∆vavailable‖ in order

for a transfer to be theoretically possible at that particular tignition. The earliest possible
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Figure 5-3: Exploring TBCS, Magnitude of ∆V for Fixed Ignition Time

ignition time (tignition = t0) will lead to the earliest and latest possible rendezvous times

for the given set of initial conditions.

In general, fixing ignition times will result in ‖∆vrequired‖ curve similar to the one

shown in Figure 5-3 where there is a minimum value at some trendezvous in the future. If

tignition is increased, the blue ‖∆vrequired‖ curve tends to move up and to the left, until

the point when ‖∆vrequired‖ is equal to the line of ‖∆vavailable‖. This is true under all

possible initial conditions, except in cases where the earth or atmosphere would prevent

transfers that are theoretically possible given the two body equation of motion. That

point is the latest possible ignition time. Depending on the initial conditions, care should

be used to assure that the transfer orbits do not follow a path that intersects the earth

or atmosphere before reaching the rendezvous point.

5.1.3 Constraining Rendezvous Time

Another important observation comes from when the point of rendezvous is fixed. In this

case, the initial conditions from Figure 5-1 are used and a fixed trendezvous = 685 sec fixes

one of the boundary conditions.

Figure 5-4 illustrates how delaying the ignition time while fixing rendezvous time will

83



Figure 5-4: Exploring TBCS, Magnitude of ∆V for Fixed Rendezvous Time

always increase the ∆vrequired. This is an important observation. For instance, for one

particular scenario, it might be possible that the ∆vrequired is much smaller than the

smallest ∆vnet achievable with GEM. Recall that Section 3.1 explains that the largest

reduction of ∆V achievable with ∆θ = 180 degrees along the arc of a circle is 31.8%.

When an greater reduction of ∆V is desired, increasing the wait time will lead to an

achievable ∆V.

5.2 Formulation into an Optimization Problem

With a few assumptions, TBCS essentially becomes an optimization problem over two

variables, tignition and trendezvous. A substantial number of spacecraft trajectory optimiza-

tion and targeting problems are concerned with minimizing the single variable ∆V, in

order to conserve fuel for later stages of a mission. As a result of the assumed example

spacecraft having fixed ∆V engines, there is no reward or even ability to reduce ∆V.

Therefore, instead of optimizing over ∆V expended, it is possible to look at other char-

acteristics. Some properties of the transfer orbit that engineers may be interested in

include:
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• The perigee altitude, hp, which significantly impacts the reentry characteristics.

• The apogee altitude, ha, which partially impacts the reentry characteristics.

• The rendezvous time, trendezvous. Perhaps the mission calls for an earlier or later

rendezvous time.

• The expected ∆θ of the GEM maneuver to achieve the reduction in velocity. This

is essentially a comparison of the ‖∆vavailable‖ compared to the ‖∆vnet‖. Too small

a value for ∆θ may negatively impact the ability respond to changes in ∆vnet. Too

large a value for ∆θ may not be realistically achievable with the hardware. For

instance, imparting the ∆V with a change in thrust direction of more than 180

degrees may be unrealistic for the short burn duration or selection of hardware.

• The magnitude or direction of any relative motion at rendezvous time.

• Re-entry flight path angle.

• Any other measure reflecting particular aspects of the transfer orbit and/or the

spacecraft’s ability to reach the rendezvous point.

One mission may dictate an interest in simple minimization or maximization of one

of these variables. A different mission may place roughly equal importance on two or

more of the variables. Still another might place hard constraints on some of these prop-

erties, effectively removing possible transfer orbits from consideration, while calculating

the comparative cost between the remaining choices. Ultimately, the goal is for TBCS

to algorithmically pick the most desirable transfer orbit. Thus, the purpose of the cost

function is to mathematically capture the subjective preferences, priorities, and concerns

of the human mission managers while maximizing likelihood of mission success.

5.2.1 Determining an Example Cost Function

To demonstrate how a simple TBCS cost function might work, a cost function has been

created to capture hypothetical preferences for a mission. For this scenario, the partic-

ular transfer orbit has been selected based on three criteria: (1) The perigee shall be
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constrained to transfer orbits that lead immediately to reentry, including a margin for

error. A small quadratic cost is also applied to transfers which technically meet the con-

straint but are on the border area. (2) If possible, the ∆vnet shall have a magnitude

between 2.3 and 2.7 km/sec, with a quadratic penalty added to those that are further

away. This provides a ∆θ that leaves a little ∆vnet wiggle room in the final ∆vnet im-

parted but at the same time leads to angular rates that are realizable for the spacecraft

control system. (3) A linear cost penalty is applied so that earlier rendezvous times are

more desirable than later rendezvous times. The actual cost function equation used in

this research is detailed in Appendix B.

The cost function here is not precise. In theory an optimum value could be reached,

but it is more important to have a “ballpark” good answer. In this scenario, the Lambert

routine was called approximately 104 times which in most cases should be realizable for

a spacecraft flight computer. For most cases, that provides enough points that a good

transfer orbit solution will emerge when the cost is evaluated for each point.

With just a simple comparison of costs, this method is not the most elegant spacecraft

targeting routine ever implemented, but it gets the job done. The next step is to apply

this quick optimization routine to the example set of initial conditions discussed in Section

5.1 to see if the algorithm returns the transfer orbit that is expect based on the preferences

built into the cost function.

5.2.2 TBCS Scenario 1: Coplanar Rendezvous, Opposite Direc-

tion of Travel

The first scenario used to explore the TBCS optimization method started with initial

conditions corresponding to two coplanar trajectories approaching head on toward each

other. The transfer orbits are calculated and the optimized transfer is simply the one

with lowest cost. Table 5.2 shows how the various properties for the optimized transfer

compare to the upper and lower bounds of those properties for the set of possible transfer

orbits. This provides an idea of how well the optimization routine was able to balance

the competing properties included in the cost function.
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Property Minimum Maximum Optimized Transfer

Perigee Altitude (km) -3876 500 -214
Apogee Altitude (km) 1187 217976 10534
Ignition Time (sec) 0 455 405
Rendezvous Time (sec) 565 850 665
Magnitude of ∆V (km/sec) 0.86 3.00 2.54
Relative Velocity (km/sec) 10.92 15.73 13.99
Effective Plane Change (◦) 0.00 0.00 0.00

Table 5.2: TBCS Scenario 1, Optimized Transfer Orbit Properties

Figure 5-5: TBCS Scenario 1, Transfer Orbit Side View

Figure 5-6: TBCS Scenario 1, Transfer Orbit Global View
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Figure 5-7: TBCS Scenario 1, Optimized Transfer and ∆V and Perigee Contour Plot

Figure 5-5 illustrates where the transfer orbit lies relative to the spacecraft and Ke-

plerian trajectories. The actual transfer is shown as a solid black line while the dashed

black line shows the continued path after passing trendezvous. Figure 5-5 shows the same

image from a global perspective and makes the ultimate orbit that the spacecraft follows

intuitively clear, including the height of apogee and how the transfer orbit ultimately

intersects the earth as a results of a negative perigee altitude.

The location of the optimized ∆vnet with respect to the ∆V and perigee contour plot

is shown in Figure 5-7 as a white diamond. It is readily apparent that the chosen transfer

orbit matches the prerogatives of the cost function. The ∆vnet just inside the green area

and thus has a negative perigee altitude. As shown in both Table 5.2 and Figure 5-7, the

‖∆vnet‖ has been reduced to approximately 2.5 km/sec, effectively. Finally, Table 5.2

and Figure 5-5 indicate that trendezvous for the optimized transfer is relatively early, only

100 seconds after the earliest possible trendezvous.
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Figure 5-8: TBCS Scenario 2, Transfer Orbit Side View

5.2.3 TBCS Scenario 2: Coplanar Rendezvous, Same Direction

of Travel

The next scenario explores what might be called a tail chase approach. This simply means

that both the spacecraft as well as the Keplerian trajectory of possible rendezvous points

lie in the same orbital plane and travel is in the same direction. Thus, at the initial

conditions, the spacecraft is behind and traveling in the same direction as a vehicle would

in the Keplerian trajectory. The initial positions and velocities of the two is illustrated in

Figure 5-8. The same cost function as Scenario 1 was used to select the optimized black

transfer orbit from a great number of possible transfer orbits.

Figure 5-9 illustrates the ultimate path of the vehicle on the global scale. Just as in

Scenario 1, the spacecraft reenters the atmosphere less than one revolution later. Table

5.3 summarizes the applicable properties of the optimized transfer, comparing them to

the range of values for family of transfer orbits given by the initial conditions.

Since the initial trajectories of Scenario 2 are coplanar and lead to coplanar transfer

orbits it is possible to show the range of possible transfer orbits ∆v’s on a two-dimensional

perigee contour plot. Figure 5-10 shows the radial and tangential components of ∆v for
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Figure 5-9: TBCS Scenario 2, Transfer Orbit Global View

Property Minimum Maximum Optimized Transfer

Perigee Altitude (km) -4603 498 -200
Apogee Altitude (km) 657 219768 11289
Ignition Time (sec) 0 985 365
Rendezvous Time (sec) 305 1675 615
Magnitude of ∆V (km/sec) 0.77 3.00 2.59
Relative Velocity (km/sec) 0.39 4.17 3.26
Effective Plane Change (◦) 0.00 0.00 0.00

Table 5.3: TBCS Scenario 2, Optimized Transfer Orbit Properties
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Figure 5-10: TBCS Scenario 2, Optimized Transfer and ∆V and Perigee Contour Plot

all possible transfer orbits. Note that in R-T coordinates, the ∆v for the optimized

transfer is very similar to the return for Scenario 1.

5.2.4 TBCS Scenario 3: Side Approach

The previous two scenarios had coplanar initial conditions. Here, a third scenario will

be explored where the initial orbit planes are 90◦ out of plane. Therefore, all of the the

transfers happen in three dimensions. Fully illustrating the family of possible transfer

orbits requires views from multiple angles. Figure 5-11 is a view from ”behind” the

spacecraft at the start and normal to the Keplerian trajectory that effectively shows the

relative altitudes of the various transfer orbits. Figure 5-12 shows the identical scenario

from above the north pole, illustrating the relative orbit plane geometry for this particular

set of initial conditions and transfer orbits.

Figure 5-13 depicts the global picture of the ultimate path taken by the optimized

transfer orbit. Note that the earth is fixed in all three figures, so the continents can be

used for orientation.
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Figure 5-11: TBCS Scenario 3, Transfer Orbit From Behind

Figure 5-12: TBCS Scenario 3, Transfer Orbit Polar View
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Figure 5-13: TBCS Scenario 3, Transfer Orbit Global View

Property Minimum Maximum Optimized Transfer

Perigee Altitude (km) -3879 498 -246
Apogee Altitude (km) 1182 11220 2628
Ignition Time (sec) 0 325 190
Rendezvous Time (sec) 580 960 675
Magnitude of ∆V (km/sec) 1.61 3.00 2.50
Relative Velocity (km/sec) 7.49 11.35 10.29
Effective Plane Change (◦) 0.06 18.96 15.65

Table 5.4: TBCS Scenario 3, Optimized Transfer Orbit Properties
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In Scenario 3, the normal component ∆vN of the each ∆v is typically non-zero for all

possible transfer orbits, including that for the optimized transfer orbit. Therefore, plotting

the ∆v against the contours of perigee leads to a non-intuitive three dimensional plot and

thus has been omitted. Table 5.4 does include perigee and ‖∆vrequired‖ information. Note

that both the range and optimized value for apogee and perigee are similar to the values

in Scenario 1 and Scenario 2.

5.3 General Observations on the TBCS Problem

The Trajectory Boundary Condition Selection process described here is a straightforward,

brute-force method of finding a transfer orbit that will meet the requirements of the

mission. Essentially, it is an optimization problem over the range of possible tignition and

trendezvous that assumes instantaneous burns and two body motion. Using a hypothetical

but plausible cost function, the results of three specific scenarios have been shown. While

these are certainly not comprehensive, they demonstrate the process of selecting boundary

conditions for a particular problem and create an understanding of how the selection can

impact various properties of the transfer orbit.

5.3.1 Considerations on Relative Velocity

Tables 5.2, 5.3, and 5.4 give the range of relative velocities for the three scenarios. It is

important to note the large difference in the range of possible relative velocities. In the

coplanar head-on scenario, vrel is between 10.9 and 15.7 km/sec. In the coplanar tail-chase

scenario, vrel is between 0.3 and 4.2 km/sec. In the 90◦ out of plane scenario, the range

is between 7.5 and 11.4 km/sec.

Clearly, the ultimate value for relative velocity is strongly dictated by the initial condi-

tions. This indicates that no matter what importance vrel is given in a cost function, it is

likely that the optimization routine will be unable to exhibit substantial control over the

variable in the selected transfer orbit. Thus, placing large constraints on relative velocity

is likely to over-constrain the problem.
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5.3.2 Considerations on Rendezvous Time

Similar to the impact on rendezvous relative velocity, the actual time of rendezvous may

largely dictated by the initial conditions. For Scenario 1, the earliest possible trendezvous

is 565 seconds after the the epoch and there is range of 285 seconds where rendezvous

is possible. For Scenario 2, the earliest possible trendezvous is 505 seconds and there is a

range of 1370 seconds where rendezvous is possible. For Scenario 3, the earliest possible

trendezvous is 580 seconds and there is a range of 380 seconds where rendezvous is possible.

The earliest possible trendezvous is dependent largely on the relative geometry of the initial

positions. The range of possible trendezvous is largely dependent on the relative direction

of motion in the spacecraft and Keplerian trajectory orbit planes.

5.3.3 Reentry Characteristics

Perigee is the most important characteristic for determining the reentry characteristics

of possible transfer orbits. Apogee also plays an important role for long term reentry

characteristics. Tables 5.2, 5.3, and 5.4 indicate that considering all possible transfer

orbits, there is a large possible range of perigee and apogee altitudes for each scenario.

Contrary to the other two properties discussed above, it may make sense to include reentry

dependent characteristics such as apogee and perigee in the cost function.

5.3.4 Summary

The exploration of the trajectory boundary condition selection problem and the author’s

experience with other initial conditions have led to a few broad conclusions about the

ability of various of an optimization to control various properties. Table 5.5 is a subjec-

tive summary of ability of an optimization routine to return transfer orbits trajectories

that meet certain requirements. Some of the properties are heavily dependent on initial

conditions. Other properties are more dependent on which particular transfer is chosen

from the family of possible transfer orbits.

The methods and strategies of picking a transfer orbit here are basically modified

methods of more traditional spacecraft targeting procedures. Reference [6] offers signif-
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Property Initial Conditions Transfer Orbit Selected

Perigee Altitude (km) Low Dependency High Dependency
Apogee Altitude (km) Low Dependency High Dependency
Rendezvous Time (sec) High Dependency Medium Dependency
Relative Velocity (km/sec) High Dependency Low Dependency

Table 5.5: Impact of Initial Conditions and TBCS on Selected Transfer Properties

icant treatment of targeting and maneuver optimization for the minimum ∆V problem.

Compared with this analysis of TBCS, typically much more sophisticated optimization

techniques are used to find optimum values. Applying advanced optimization techniques

to the TBCS problem may be an avenue of future research. However, simply running

Lambert many times and finding a “good” transfer orbit instead of the “global optimum”

transfer orbit may be all that the mission calls for. Ultimately the challenging part of

the TBCS problem is choosing a cost function that accurately represents the preferences

and priorities of a mission’s human decision makers over a wide range of possible initial

conditions.
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Chapter 6

A New Reference Guidance Solution

The purpose of this chapter is to develop a method of generating a reference trajectory

that will place the vehicle near the rendezvous point at the rendezvous time. Using a mix

of orbit geometry and new mathematical relationships developed in Chapter 4, a plane of

maneuver is calculated that defines the vehicle’s attitude profile during the burn and thus

the ∆vnet that is imparted. A baseline GEM Steering maneuver occurring in this plane

will be determined using a lookup table on the ∆θ for the GEM maneuver. There is a

discussion on the major assumption for this method and its potential impact on the error.

A slight modification to the algorithm is proposed which achieves a significant increase in

accuracy. Lastly, the assumptions made in developing this method are justified.

Section 3.1 described two alternate methods for which baseline GEM maneuvers can

be defined. A GEM-CR maneuver was one which assumed a constant angular rate in the

plane of maneuver. The GEM-ARC method assumed that the ∆V would be imparted

along an arc of a circle, which meant that angular rate in the plane of maneuver was

proportional to the acceleration from the engine. The two approaches are different, be-

cause in the first, commanded thrust direction is based on time whereas in the second,

commanded thrust direction depends on what fraction of the ∆V has been expended.

This chapter develops the reference guidance solution based on the GEM-CR method,

but a brief discussion of the different considerations for GEM-ARC follows at the end of

the chapter.
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Figure 6-1: Depiction of Parking Orbit Relative to Rendezvous Point

6.1 A New Look at the Orbit Transfer Geometry

Figure 6-1 shows the relative orbit geometry for TBCS Scenario 1. The boundaries of

the planned transfer orbit, rignition and rrendezvous, are clearly shown. In addition, there

is another point that is of interest, rwithout burn. This point corresponds to the point

further along in the spacecraft’s parking orbit that the spacecraft would be at the time of

rendezvous if no burn were to happen. The blue line is the spacecraft parking orbit and the

the black line is the planned transfer orbit that was returned by the TBCS optimization

routine.

6.1.1 Position Without Burn

Based on an intuitive understanding of astrodynamics, consider the relative velocities at

rignition, rrendezvous, and rwithout burn. Since the spacecraft is already at orbital velocity

prior to the burn, a substantial amount of the velocity the spacecraft has after the burn
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is it already has at the beginning of the burn. As a result, the distance from rignition to

either rrendezvous or rwithout burn is much larger that the distance between rrendezvous and

rwithout burn. This is true for any burn possible with the example spacecraft’s ∆V.

It turns out that it is helpful to think of the problem of reaching rrendezvous at trendezvous

instead as a problem of reaching rrendezvous from rwithout burn in the amount of time allowed

for the transfer, under no gravitational acceleration, and with no initial velocity. Consider

a new vector d defined below and shown in Figure 6-1 as a magenta line. The magnitude

of d is d.

d = rrendezvous − rwithout burn (6.1)

trendezvous = tignition + ∆ttransfer (6.2)

= tignition + ∆ttotal burn + ∆tcoast (6.3)

= tburnout + ∆tcoast (6.4)

tS2I = tignition + ∆tstage 1 burn + ∆tinterstage (6.5)

Equations 6.2 through 6.5 show the relationship between different measures of times

in the problem. Note that tS2I refers the time of second stage ignition. Since ∆tinterstage

is set to a constant 10 sec for the example spacecraft’s reference maneuver and the burn

time for each stage is 20 sec, tS2I in the reference maneuver is set to 30 sec after tignition.

6.2 Recasting the Problem in the RPV Frame

In order to solve the problem of closing the distance from rwithout burn to rrendezvous in

the amount of time ∆ttransfer, an easier problem will be addressed. For now, consider a

“gravity field-free” rendezvous problem where there is no effect on the vehicle by gravity or
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any force other than the vehicle’s own propulsion system. In this problem, the rendezvous

point is set on the x-axis at distance d from the origin. The vehicle begins at rest and

all acceleration is in the x-y plane (so velocity and position remain in this plane as well).

The vehicle in this “gravity field-free” example has the same ∆V and thrust profile as the

example spacecraft.

6.2.1 Using GEM to Solve a Field-Free Problem

Suppose that if the thrust vector throughout the burn was held constant along the x-axis

(pointed at the rendezvous point) and the resulting ∆V caused the vehicle to overshoot

rendezvous point. Some kind of energy dissipation maneuver would therefore be required.

For this example, suppose that the path that the velocity is imparted in is constrained to

a GEM-CR maneuver where the vehicle maintains a constant angular rate in the xy-plane

(plane of maneuver) for the length of the burn.

Suppose that θ(t) is defined as the angle off of the initial thrust vector. Figure 6-2

shows the angle θ and angular rate θ̇ = ω as a function of time. The angular rate is such

that the vehicle will have a ∆θ = 90◦ change of thrust direction during the burn. This

value for ∆θ is simply for use as an example in understanding the method.

Figure 6-3 depicts how the velocity and position change during the course of the burn.

Given the constant angular rate ω and the vehicle’s thrust profile from Appendix A, the

velocity follows those curves. Let δv and δr denote the change in velocity and position

during the course of the 50 sec burn.

As an example, suppose that ∆tcoast is 120 sec. Figure 6-4 shows the position during

the 50 sec burn and the following 120 coast period. After the 170 sec maneuver, the

vehicle has reached r(trendezvous). Suppose the desired final position for this maneuver is

on the x-axis. Then by rotating initial and final thrust vectors by a carefully selected

angle γ, it is possible to have the final position r(trendezvous) fall on the x-axis. Equation

6.6 gives the angle γ that can rotate the entire maneuver that is shown in Figure 6-3 to

one that results in a final position on the x-axis.
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Figure 6-2: Angular Rate and Angles for GEM-CR Maneuver with ∆θ = 90◦

γ = arctan

(
ry(trendezvous)

rx(trendezvous)

)
(6.6)

Given the GEM-CR ∆θ, the ∆tcoast, and γ, Equations 6.7 and 6.8 can be used to find

the initial and final unit vector thrusting directions for the burn. At first stage ignition,

the vehicle should be thrusting (or pointing) in the direction of îRPV
initial while at burnout of

the second stage the vehicle should be thrusting along the vector îRPV
final. The angular rate

of change during the burn, equal to ω, is constant for this reference condition.

îRPV
initial =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 ·


1

0

0

 =


cos γ

− sin γ

0

 (6.7)
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Figure 6-3: Position and Velocity for GEM-CR Maneuver with ∆θ = 90◦
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Figure 6-4: Position during GEM-CR Maneuver and 120 sec Coast
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îRPV
final =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 ·


cos ∆θ

− sin ∆θ

0



=


cos γ cos ∆θ − sin γ sin ∆θ

− sin γ cos ∆θ − cos γ sin ∆θ

0

 (6.8)

Figure 6-5 shows a maneuver with the thrusting directions given by îRPV
initial and îRPV

final.

For the simple gravity field-free problem, if the desired point of rendezvous was equal

to rRPV (trendezvous), then the assumed ∆θ would solve the problem. A maneuver that

reaches a rendezvous point on the x-axis at length d from the origin depends only on the

following things:

• A given ∆θ (or ω where ∆θ = ω ·∆ttotal burn).

• The assumption of ∆tinterstage = 10sec

• The assumed acceleration profile

6.2.2 Using a GEM-CR Table to find ∆θ

For the sample problem above, a ∆θ was assumed and d was determined. Suppose instead

that d is given and ∆θ must be found. To solve the problem, two lookup tables will be

used. The independent variable in the lookup tables is ∆θ. The dependent variables in

the lookup tables are the vector quantities δr and δv. Once ∆tcoast is known, then the

dtable corresponding to each ∆θ can be calculated using 6.9. The purpose of the lookup

table method is to find ∆θ such that dtable(∆θ) = d.

dtable(∆θ) = ‖δr + δv ·∆tcoast‖ (6.9)
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Figure 6-5: Position and Velocity, GEM-CR Maneuver and Coast in the RPV Frame
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Once ∆θ is known, then γ can be found using Equation 6.6. Finally, îRPV
initial and îRPV

final can

be determined using Equations 6.7 and 6.8.

Setting up the GEM-CR Lookup Table

The GEM table can be created by running many simple nonlinear simulations. Given

each independent variable ∆θ, the corresponding dependant variables δr and δv can be

found by running the nonlinear simulation defined by Equation 6.10.



ω = −∆θ
ttotal burn

θ(t) = ωt

î(t) =


cos θ(t)

− sin θ(t)

0



athrust(t) =
Fthrust(t)
m(t)

· î(t)

δv =
∫ tburnout
tignition

athrust(t)dt

δr =
∫ ∫ tburnout

tignition
athrust(t)dt dt

(6.10)

Since this creates two simple one-dimensional lookup tables (for both δr and δv), it

may be possible to run the calculations on board without use of the lookup table. The

lookup table has been included because it may be desirable to add independent variables

in an actual implementation. Another variation could involve defining additional GEM

maneuver parameters to create a lookup table with two or three independent variables.
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6.3 Relating the RPV Frame back to the ECI Frame

A relatively simple rendezvous problem has been set up and solved in the RPV frame.

The solution defines the planned attitude profile during the course of the burn defined

by îRPV
initial, îRPV

final, and the assumption that the angular rate in the plane of maneuver is

constant. The solution found in the RPV plane can now be transformed into the ECI

frame.

First, consider the problem of getting a spacecraft from rwithout burn to rrendezvous. The

direction of travel would be along the vector d. Therefore, the x-axis of RPV should be

lined up with the vector dECI .

îECI
xRPV

=
d

d
=

rrendezvous − rwithout burn

‖rrendezvous − rwithout burn‖
(6.11)

6.3.1 Minimizing First Stage Perigee

Now comes the question of where the y-axis and z-axis of RPV frame are aligned in

the ECI frame. It turns out that Chapter 4 holds the answer. Notice in the velocity

profile shown Figure 6-5 that the acquired velocity in the y-axis at first stage burnout

(and separation) vy(tfirst stage burnout) > 0. If the lookup table is created according to

Equation 6.10, then this is always true unless vy(tfirst stage burnout) = ∆θ = 0 and the

burn is inertially fixed.

Now consider the velocity profile of Figure 6-5 overlaid on Figure 4-5, where the x-axis

of the RPV frame is aligned with the ∆vnet. It is clear that the rotation around îECI
xRPV

is important because that has direct impact on the resulting first stage perigee and thus

its reentry characteristics. By using the gradient of perigee from Chapter 4, îECI
yRPV

can be

placed in the direction perpendicular to îECI
xRPV

with the most rapidly decreasing perigee.

In order to calculate the gradient, it is necessary to determine approximately where first

stage separation will occur in the ∆V plane. The ∆vMPFSS is an “average” value for all

possible maneuvers resulting in a given ∆vnet based on the proportion of ∆vnet that is

imparted by the first stage and is given in Equation 6.12.
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∆vMPFSS =

(
∆Vfirst stage

∆Vfirst stage + ∆Vsecond stage

)
∆vnet (6.12)

≈
(

1

3

)
∆vnet for the example spacecraft (6.13)

A precise value for ∆vnet is not necessary. In this case, the value ∆vECI
net that was

calculated during TBCS optimization is sufficient. The next step is to find the gradient of

perigee of ∆vMPFSS using Equation 4.28. In order to minimize first stage perigee, îECI
yRPV

should be the component of ∇rp(∆vMPFSS)ECI which is perpendicular to îECI
xRPV

. This

can be used to find TECI2RPV using Equations 6.14, 6.15, 6.16, and 6.17.

∆vRTN
MPFSS = TECI2RTN ·∆vECI

MPFSS (6.14)

∇rRTN
p = ∇rp(∆vRTN

MPFSS) using Equation 4.28 (6.15)

∇rECI
p = TT

ECI2RTN · ∇rRTN
p (6.16)

TRPV 2ECI =

[
d
d

(d×∇rp)× d
‖(d×∇rp)× d‖

d×∇rp

‖d×∇rp‖

]
(6.17)

6.3.2 Algorithm for the Reference Guidance Solution

All of the steps involved in calculating the reference guidance solution has been collected

and listed in numerical order below.

1. Inputs: rECI(tignition), vECI(tignition), rrendezvous, trendezvous.

2. Find Transition Matrix TECI2RTN .

3. Propagate the spacecraft forward by ∆ttransfer to determine rwithout burn.
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4. Find d with either the vector from rwithout burn to rrendezvous or that defined by

Equation 6.18.

5. Use d to find the solution GEM maneuver in the RPV frame defined by ∆θ.

6. Find γ, îRPV
initial, and îRPV

final

7. Determine the velocity for the mean point of first stage separation ∆vECI
MPFSS =

0.33∆vECI
net

8. Transform the ∆vECI
MPFSS into the RTN frame.

9. Find the Gradient of Perigee ∇rp(∆vRTN
MPFSS)

10. Transform the gradient of perigee into the ECI frame.

11. Using the gradient of perigee, determine TRPV 2ECI

12. Transform îinitial and îfinal into the ECI frame.

13. Outputs: reference guidance solution defined by îinitial and îfinal.

6.3.3 Implementation using GEM-ARC

Implementing GEM-ARC is very similar to the GEM-CR solution that has been just

described. There is one crucial difference. Using a GEM-ARC method means that îfinal

is the pointing direction defined at the expected value of tburnout and îthrust(t) depends

on time. Rather, the pointing direction îthrust(t) depends on the fraction of the total ∆V

that has been delivered. Therefore, îfinal is defined as the pointing direction when the

expected value of ∆V has been delivered.

6.3.4 The Major Assumption

In developing this new modified method using the RPV frame, the “gravity field-free”

analysis, and rwithout burn, one key assumption has been made. That is that the net effect
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Figure 6-6: Accuracy of the Reference Trajectory, Scenario 1

110



of gravity is the same along the transfer orbit from rignition to rrendezvous as it is along the

original parking orbit trajectory from rignition to rwithout burn.

As given in Equation 2.2, acceleration due to gravity lies toward the center of the

earth and is inversely proportional to the distance from the spacecraft to the center of the

earth. This means that if rrendezvous is at significantly higher altitude than rwithout burn, as

in Scenario 1, the reference trajectory will cause the spacecraft to arrive slightly higher

than the intended rrendezvous. This happens because of the net acceleration from gravity

is less along the transfer orbit than along the lower-altitude parking orbit. Figure 6-6

clearly illustrates this, with the black trajectory being the transfer returned by TBCS

and the green trajectory being the reference trajectory that the spacecraft follows given

the attitude profile during the burn defined by îinitial and îfinal. The expected error

resulting from this assumption is 10.695 km for Scenario 1, much of it in the local vertical

direction.

Another type of error also caused by differential gravity occurs when there is a sig-

nificant plane change in the maneuver. This occurs because when there is a large plane

change, the net effect of gravity is in a different direction. The assumption will cause the

reference guidance solution (through îinitial and îfinal) to prescribe less of a plane change

than is actually required.

Longer transfer times will magnify the error resulting from the “field free” assumption

simply because gravity has a longer amount of time to act. This results because the vector

d begins to deviate from the instantaneous Lambert solution while the burn time begins

to look very small relative to the total transfer time. Essentially, this is because the net

difference in gravity between the actual trajectory and the continued parking orbit greatly

increases with a longer transfer time.

6.4 A Modification to d to Improve Performance

In this section, a modification to the variable d will be made in order to make significant

improvements to the accuracy of the reference guidance solution. This new d will be used

in the algorithm found in Section 6.3.2.
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Results d based on rwithout burn d based on ∆vinstantaneous

Scen. 1 Opt. Trans. 10.695 km 5.580 km
Scen. 2 Opt. Trans. 9.333 km 4.779 km
Scen. 3 Opt. Trans. 65.406 km 29.421 km

Table 6.1: Performance Comparison for the Two Definitions of d

Recall that d forms the x-axis of the RPV frame and d is the distance from the origin

to rrendezvous in the RPV frame. Consider a new definition of d that uses the instantaneous

Lambert solution, given in Equation 6.18.

d = ∆vintantaneous ·∆ttransfer (6.18)

It has been shown that if d is defined using Equation 6.18, the accuracy is better than

if using rwithout burn to calculate d. Consider Figure 6-5. Suppose now that the x-axis of

the RPV frame was aligned with the new definition of d and rrendezvous was distance d

from the origin. If the vehicle was capable of an instantaneous change in velocity along the

x-axis (corresponding to ∆vinstantaneous), it would arrive to rrendezvous at time ∆ttransfer

and follow the black trajectory in Figure 6-6. Instead, the new definition of d will be used

in finding ∆θ from the lookup table and in calculating TRPV 2ECI in Equation 6.17.

For very short transfer times, the two different d vectors are identical, but accuracy

improves with the new formulation as time increases. This happens because the Lambert

∆vinstantaneous solution already compensates for the differential gravity. Recall that the

position error from a given problem results from the net difference in total gravitational

acceleration. Refer to Figure 6-6. For the original method of calculating d, the error

arises from the difference between the actual trajectory (in green) and the parking orbit

trajectory (in blue). For the new method of calculating d, the error results from the

gravitational difference in between the actual trajectory (in green) and the Lambert in-

stantaneous trajectory (in black). Table 6.1 summarizes the differences between the old

and new methods of calculating d for the three optimized transfers from TBCS.

It is evident from Table 6.1 that Scenario 3 has a larger error than the other two

results. It should be noted that this is largely a result from the fact that Scenario 3 has

a longer transfer time, which means that the error from differential gravity accumulates
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for a longer period of time. It is not caused by the fact the Scenario 3 is the only scenario

with an out of plane transfer.

6.5 Justification for the Reference Guidance Solution

While the method to find a reference trajectory is approximate and results in an imperfect

solution, its use is justified because the error is relatively small and the closed loop method

of linear perturbations is capable of correcting for it. As a result of the inherent flexibility

in ∆v built in to the TBCS optimization routine, minor modifications can be made to the

reference guidance solution c to drive the expected error down to throughout the burn.

The next chapter will describe how the method of linear perturbations on a reference

trajectory can be used in this problem.

113



[This page intentionally left blank.]



Chapter 7

Application of Linear Perturbation

Methods

At this point, there is a reference guidance solution defined îinitial, îfinal, and a few assump-

tions about the burn (GEM-ARC or GEM-CR, fixed interstage time, etc). By running

this reference guidance solution in a nonlinear simulation, the expected position error e

at trendezvous can be determined. It is assumed that small modifications to the reference

guidance solution will enable the spacecraft to reach rrendezvous and drive the e toward

zero. The purpose of this chapter is to determine what those control input modifications

should be.

First, a couple control variables will be introduced that allow the ∆V path to vary

from the GEM-CR or GEM-ARC assumptions. With these new control variables, the

reference guidance solution will be improved using the method of linear perturbations

outlined in Section 3.2. Finally, the closed loop algorithm is outlined.

7.1 Introducing Control Variables on the GEM Ma-

neuver

To employ the method of linear perturbations, it is necessary to define control variables

that can be adjusted at each step to refine the solution and minimize the expected error.
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While many more control variables are available, this thesis will employ between three

and six difference control variables, depending on the phase of flight.

7.1.1 Perturbations on Unit Vector Direction

It is important to exploit all degrees of freedom available in the unit vectors îinitial and

îfinal. To effectively employ the method of linear perturbations upon a reference trajectory,

there must be a method available to perturb a unit vector î. Recall from Chapter 2 that

unit vectors have two degrees of freedom. Suppose that a plane of maneuver has been

defined by a vector normal to it, înormal. Then, î can be perturbed by a small angle δθ

that lies in that plane of maneuver and by another small angle δψ that is normal to the

plane of maneuver.

Equations 7.2 through 7.5 create an algorithm used to perturb a unit vector direction.

It was developed using the standard definitions of single-axis rotation matrices. Every

time that the method of linear perturbations is used on either îinitial or îfinal, it will

require a call to a function that basically finds the perturbed vector from î, înormal, δθ,

and δψ. Note that the plane of maneuver vector înormal can always be found with a cross

product of the current (or initial) and final unit vector thrust directions from the guidance

solution, as in Equation 7.1.

înormal = îcurrent × îfinal (7.1)

Ta =


cos(δθ) sin(δθ) 0

− sin(δθ) cos(δθ) 0

0 0 1

 (7.2)

Tb =


cos(δψ) 0 − sin(δψ)

0 1 0

sin(δψ) 0 cos(δψ)

 (7.3)

Tc =

[
î
‖̂i‖

înormal × î
‖̂inormal × î‖

înormal

‖̂inormal‖

]
(7.4)
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Figure 7-1: Theta in the GEM-CR Reference Maneuver

îperturbed = Tc ·Tb ·Ta ·


1

0

0

 (7.5)

At every step in the guidance algorithm, two perturbations of the vector îfinal will be

run using Equations 7.1, 7.2, 7.3, 7.4, and 7.5.

7.1.2 Perturbation on the GEM Maneuver Assumptions

The objective of this section is to add degrees of freedom to the problem by dropping

assumptions that were used to create the reference trajectory. In developing the reference

trajectory and using GEM, assumptions were made about the path in the ∆V plane. If

θ(t) corresponds to the change in direction in the plane of maneuver, GEM-CR assumes

that it is linearly related to time while GEM-ARC assumes that it is linearly related to

the proportional of expended ∆V. These assumed relationships are depicted in Figures

7-1 and 7-2 as the solid black line.

Suppose for an instance that this linearity assumption was dropped. Instead of having

a linear relationship, θ(t) could depend on time (or proportion of ∆V used) by any func-
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Figure 7-2: Theta in the GEM-ARC Reference Maneuver

tion. For instance, it could follow additional paths denoted by the gray lines in Figures

7-1 and 7-2. Equations 7.6 and 7.7 use a vector k to define θ(t) using a Taylor series

expansion.

θGEM−CR(t)

∆θ
= k1

(
t

T

)
+ k2

(
t

T

)2

+ k3

(
t

T

)3

+ · · · (7.6)

θGEM−ARC(t)

∆θ
= k1

(
∆Vused(t)

∆Vcapability

)
+ k2

(
∆Vused(t)

∆Vcapability

)2

+ k3

(
∆Vused(t)

∆Vcapability

)3

+ · · · (7.7)

where k = [k1 k2 k3 · · · ]T and ‖k = 1‖

While higher order terms could be easily implemented, this thesis will consider only

the linear and quadratic term. Since there is a constraint k1 + k2 = 1, this provides one

additional degree of freedom.
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Figure 7-3: Understanding the k Update Process

7.1.3 Updating the K Vector

In turns out that because of how the k is defined, it does not stay constant. Suppose a

function θ(t) is defined by a vector k in the domain from tcurrent to tburnout and has an

range from θcurrent to θfinal. A certain amount of time dt passes from guidance step n to

the next guidance step n+ 1. In order to stay on the path defined by k at guidance step

n, the value of k must be changed. Figure 7-3 should assist in understanding this process.

Looking at Figure 7-3, it is clear that the function defined from tn to tburnout is different

from the function defined from tn+1 to tburnout. For instance, the slope at tn is different

than that at tn+1. At each new guidance step, k must be updated.
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δxn = 1− k1

(
dt

Tn

)
− k2

(
dt

Tn

)2

(7.8)

k1(tn+1) =
1

δxn

(
k1

(
Tn − dt

Tn

)
+ 2k2

(
Tn − dt

Tn

)(
Tn − dt

Tn

))
(7.9)

k2(tn+1) =
1

δxn

(
k2

(
Tn − dt

Tn

)2
)

(7.10)

= 1− k1(tn+1) (7.11)

Note that δxn is simply a fraction corresponding to the fraction of θ that has been

traveled in dt. Equations 7.8, 7.9, and 7.10 can be used to update the values for k1 and

k2. These relations were determined using the method of substitution.

7.1.4 Perturbations on the Time Line

The final control input that is implemented in this thesis is a perturbation on the original

time line. Recall in Chapter 6 that a constant interstage time ∆tinterstage = 10 sec was

assumed. Prior to the actual second stage ignition, that interstage time can be varied if

doing so improved the performance. The control variable δtS2I is therefore a perturbation

on the tS2I that can be adjusted prior to the actual ignition.

7.2 Updating the Reference Guidance Solution

The reference guidance solution introduced in the previous chapter still resulted in ap-

preciable errors. The first use of the method of linear perturbations will be to update

the guidance solution so that the predicted error is driven down to zero. This iterative

algorithm will be run prior to first stage ignition to refine the attitude profile during the

burn. At the start of this algorithm, k2 = 0 and δtS2I = 0.
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7.2.1 Control Input Vector

When using the method of linear perturbations to update the reference trajectory, every

control variable is available since the original reference assumptions have been dropped

and the spacecraft can still reach any îinitial. Equation 7.12 includes all of the perturba-

tions on the reference guidance solution c.

∆c =



δθi

δψi

δθf

δψf

δtS2I

δk2


(7.12)

Since there are six control variables, that means that the nonlinear simulation will

be run seven times for every iteration that the reference trajectory is updated, once for

∆c = 0 and six times where ∆c = ∆cn where ∆cn is a small perturbation on each of

the six control variables. The result rf (c + ∆cn) of each nonlinear simulation is used to

estimate ∂r/∂cn. Finally, since there are n = 6 control variables and m = 3 components

of error, Equation 3.20 is used to find a combination of control inputs ∆ccmd) that will

drive the expected error down to zero. The method of linear perturbations is only being

used right here to update the reference guidance solution prior to first stage ignition.

In reality, perturbations in the control variables are only approximately linear so when

the nonlinear simulation is run to determine ∆ccmd, there will still be error after applying

the modifications to the control variables. For this reason, the method of linear perturba-

tions should be implemented as an iterative method where the reference guidance solution

cp improves at each step. With a sufficient number of iterations, the expected error ep

should converge to zero.
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7.2.2 The Reference Update Algorithm

At this point, the series of equations that will be used to update the reference trajectory

have already been stated. To ensure clarity, the implementation of the method of lin-

ear perturbations to improve the reference trajectory discussed above has been repeated

below.

1. Inputs: ignition state (rignition, vignition, reference guidance solution îinitial) and c

(̂ifinal, tstage 2 ignition = 0, k2 = 0).

2. Run nonlinear simulation with ∆c = 0 to determine final position rf (cp).

3. Run nonlinear simulation with ∆c = δθi to determine final position rf (cp + δθi).

4. Run nonlinear simulation with ∆c = δψi to determine final position rf (cp + δψi).

5. Run nonlinear simulation with ∆c = δθf to determine final position rf (cp + δθf ).

6. Run nonlinear simulation with ∆c = δψf to determine final position rf (cp + δψf ).

7. Run nonlinear simulation with ∆c = δk2 to determine final position rf (cp + δk2).

8. Run nonlinear simulation with ∆c = δtS2I to determine final position rf (cp+δtS2I).

9. Find Dp =

[
rf (cp + δθi)− rf (cp)

δθi
· · · rf (cp + δtS2I)− rf (cp)

δtS2I

]
10. Use method of linear perturbations to find the optimal changes to the set of guidance

commands ∆c (Equation 3.20)

11. Update the planned guidance solution c = c + ∆c.

12. Repeat steps 2 to 12 until rf (cp) = rrendezvous

13. Outputs: updated guidance solution c and îinitial.
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7.3 Closed Loop Guidance

At this point, there is a reference guidance solution with very little expected error, based

on the model of the vehicle dynamics. During the actual burn, various uncertainties will

enter into the problem. The actual state vector will likely begin to deviate from the state

vector predicted by the reference trajectory. Therefore, the expected error will begin to

grow. Depending on the mission, rrendezvous may change during the course of the burn.

The purpose of the closed loop guidance algorithm is to respond to these uncertainties

when there is still adequate time and control authority with which to do so.

7.3.1 Control Input Vector

Since the first stage burn has already started, the îinitial is no longer something that can

be controlled. During the first stage burn, both k2 and tS2I can be modified and therefore

the perturbation control vector is given by Equation 7.13. During the second stage burn,

tS2I has already occurred, so there are only three control variables remaining. The control

variable vector is given in Equation 7.14.

∆cfirst stage =


δθf

δψf

δk2

δtS2I

 (7.13)

∆csecond stage =


δθf

δψf

δk2

 (7.14)

7.3.2 Closed Loop Guidance Algorithm

The following algorithm is the complete listing of steps in the guidance routine once the

initial pointing direction can no longer be controlled (just prior to ignition) and before
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second stage burnout.

1. Inputs: current state (r, v, î, t), planned guidance solution c (̂ifinal, tstage 2 ignition,

k2).

2. Run nonlinear simulation with ∆c = 0 to determine final position.

3. Run nonlinear simulation with ∆c = δθf to determine final position rf (cp + δθf ).

4. Run nonlinear simulation with ∆c = δψf to determine final position rf (cp + δψf ).

5. Run nonlinear simulation with ∆c = δk2 to determine final position rf (cp + δk2).

6. Run nonlinear simulation with ∆c = δtS2I to determine final position rf (cp+δtS2I).

7. Find Dp =

[
rf (cp + δθf )− rf (cp)

δθf
· · · rf (cp + δtS2I)− rf (cp)

δtS2I

]
8. Use method of linear perturbations to find the optimal changes to the set of guidance

commands ∆c (Equation 3.20)

9. Update the planned guidance solution c = c + ∆c.

10. Outputs: updated guidance solution c and îinitial.

This chapter has now spelled out the guidance solution control inputs and the guidance

algorithm. The next chapter contains results when these methods are implemented in

computer simulation.
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Chapter 8

Results

This chapter presents results from a closed loop simulation implementing the methods

described in this thesis. These are in addition to the results contained in Chapter 5 that

discuss the results of the TBCS optimization in greater depth. This simulation uses the

TBCS optimized ignition point and rendezvous point given in Chapter 5. Then a reference

guidance solution is calculated using the methods in Chapter 6. Finally, the method of

linear perturbations on a reference trajectory from Chapter 7 is implemented. The results

include both numerical accuracy and visual analysis of the resulting trajectories. There

are three things that these results should and do demonstrate:

• An improvement in the accuracy of the new methods compared to the Closed Loop

Lambert GEM, when both assume perfect navigation and control.

• The effectiveness of the new method in causing first stage re-entry.

• A similarity between the final closed-loop trajectories and the optimized TBCS

trajectories that assume instantaneous burns. Since TBCS runs optimization on

the parameters of hypothetical transfer orbits, it is important to confirm that the

close loop trajectories are similar. This will validate TBCS.

Since this is not a full dynamic simulation because navigation and control are assumed

to be perfect, the accuracy results contained in this section only indicate the relative

performance of guidance algorithms and not the performance of any particular system
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Simulation Closed Loop New Method New Method
Parameters Lambert GEM Reference GEM-CR Closed Loop GEM-CR

Guidance Update Rate 10 hz n/a 1 hz
Navigation perfect perfect perfect

Control rate limited rate limited rate limited
Uncertainties none none none

Table 8.1: Comparison of Simulation Parameters

Results Closed Loop New Method New Method
Lambert GEM Reference GEM-CR Closed Loop GEM-CR

Scen 1 Opt Trans 33.806 km 5.580 km 0.350 km
Scen 2 Opt Trans 38.786 km 4.779 km 0.623 km
Scen 3 Opt Trans 13.771 km 29.421 km 1.033 km

Table 8.2: Comparison of Accuracy for Various Scenarios

to meet mission requirements. They do not necessarily correspond to the accuracy of an

actual system. Rather, the results show improvement over closed-loop Lambert GEM and

indicate the potential for the new algorithm to be implemented on a space mission.

8.1 Performance of the Closed Loop Guidance Algo-

rithm

The capability of the algorithm to get the spacecraft to the rendezvous point with a great

deal of accuracy is an important consideration. Table 8.1 lists the various parameters

for closed loop Lambert GEM, the GEM-CR reference solution, and finally the GEM-CR

reference solution with the closed loop method of linear perturbations employed on the

GEM-CR reference solution.

Table 8.2 lists the relative performance of the three different scenarios. Recall that

in scenario 1 the trajectories were coplanar in opposite directions, in scenario 2 the tra-

jectories were coplanar in the same direction, and in scenario 3 the trajectories were 90◦

out of plane. The error is defined as the magnitude difference in position between the the

rendezvous point rrendezvous and the position of the spacecraft at trendezvous and not the

“closest approach.”
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First Stage Reentry Second Stage Reentry
t after tignition t after tignition

Scen 1 Opt Trans 70 min 236 min
Scen 2 Opt Trans 77 min 249 min
Scen 3 Opt Trans 28 min 90 min

Table 8.3: Comparison of Re-entry Times for Various Scenarios

For Scenario 1, closed loop Lambert-GEM results in 33.806 km of error even with

perfect control and navigation and a more frequent guidance update rate. It is clear that

even simply following the reference solution (given in the middle column of Figure 8.2)

would offer an improvement to closed-loop Lambert GEM. Once the loop is closed using

the method of linear perturbations, the accuracy is very high. An error of 0.350 km is

small considering the extremely high velocities involved at rendezvous, around 7 km/sec.

The errors form the new method, around one kilometer or less, are essentially zero and

largely the result of the guidance update rate and numerical accuracies in the simulation.

The next step is to determine if the first stages were put on a path to atmospheric

reentry. Table 8.3 lists the amount of time after tignition before the first and second stages

reenter the earth’s atmosphere (in all cases, the trajectory intersects the earth’s surface).

The reference guidance solution accomplishes its objective of first stage reentry in each

of the three scenarios. TBCS, which was originally responsible for ensuring second stage

reentry after the loop is closed, also accomplishes its objective for the three scenarios.

8.1.1 Scenario 1

At this point, the actual trajectories will be inspected to confirm that they meet expec-

tations. Figure 8-1 shows a global view of the scenario 1 trajectories. As a result of the

initial conditions, all of the trajectories lie in the same plane. The Keplerian trajectory is

shown in red. The spacecraft’s parking orbit is shown in blue. The TBCS solution corre-

sponding to a ∆vinstantaneous is shown in black. The spacecraft’s position during the burn

is shown as the thick red line. The spacecraft’s position during the coast phase and the

continued trajectory after the rendezvous are shown in green. The continued trajectory

is shown in light blue.
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Figure 8-1: Global View of the Closed Loop Simulation Trajectories, Scenario 1
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Figure 8-2: View of the Closed Loop Simulation Trajectories, Scenario 1

It is clear that both the second stage/payload and the first stage re-enter the at-

mosphere. The second stage follows the trajectory planned by the TBCS optimization

well, and re-enters the atmosphere near the point it was predicted. The first stage also

clearly follows a re-entry trajectory and de-orbits approximately two-thirds of an orbit

later. Figure 8-1 demonstrates two things: first, that the closed loop trajectories are very

close to those predicted by TBCS, and second, that the method of the gradient of perigee

does lead to the de-orbit of the first stage.

Figure 8-2 shows a close-in view of the relative positions of the transfer, the original

parking orbit, and the Keplerian trajectory.

Figure 8-3 is a view of only the transfer trajectory. This shows clearly the difference in

trajectories between the ∆vinstantaneous Lambert solution (in black) and the actual path

that the satellite follows. There is a slight delay in acquiring the trajectory but by the
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Figure 8-3: Close-In View of the Closed Loop Simulation Transfer, Scenario 1
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end of the burn the spacecraft is traveling nearly parallel to the Lambert solution and

crosses it when it reaches the rendezvous point.

Chapter 6 explains the technique in which the RPV frame is placed relative to the

ECI frame. Recall that the frame is rotated such that first stage separation occurs at a

place in three-dimensional ∆V space opposite of the gradient of perigee vector. Suppose

that the first stage separation occurred in the direction of the gradient of perigee vector

∇rp(∆vRTN
MPFSS). If the analysis of Chapter 4 and methods of Chapter 6 are correct, the

behavior of the first stage after separation would be different since it would have acquired a

substantially different velocity by the time of separation. This would, in essence, maximize

the perigee. Figure 8-4 depicts a closed-loop maneuver where the y-axis of the RPV plane

is defined in the opposite direction of that which would minimize first stage perigee. The

accuracy of the new burn is 0.716 km, essentially the same as that shown in Table 8.2

for Scenario 1, but it is clear that the first stage does not de-orbit within one revolution.

This demonstrates the effectiveness of the new method of defining the plane of maneuver

to cause first stage reentry. The new method has caused the first stage to reenter with no

reduction in accuracy, where another implementation may have resulted in the first stage

remaining in orbit.

8.1.2 Scenario 3

It is also important to validate the algorithm with results for Scenario 3, since the three

dimensional trajectories involved make calculating the plane of maneuver a more complex

problem. The colors denote the same trajectories as in the previous figures. Figure 8-5

shows a side-view of the transfer trajectory and the continued paths of both the first

stage and second stage. It is clear that both the first and second stages eventually lead

to reentry.

Figure 8-6 depicts the same closed-loop solution from a polar view, which clearly

delinates the relative orientation of the different orbital planes for the trajectories. Figure

8-3 shows the transfer from “behind” the spacecraft starting position. This figure shows

the relative altitudes involved with the problem.

Together, Figures 8-5, 8-6, and 8-7 have demonstrated the effectiveness of the new
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Figure 8-4: Alternate Plane of Maneuver, Scenario 1
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Figure 8-5: View of the Closed Loop Simulation Trajectories, Scenario 3

Figure 8-6: View of the Closed Loop Simulation Trajectories, Scenario 3

133



Figure 8-7: View of the Closed Loop Simulation Trajectories, Scenario 3

method in solving a complex three dimensional orbit transfer problem. The series of

attitude commands implemented have enabled high accuracy at trendezvous while ensuring

rapid de-orbit of the first stage.

8.2 Recommended Follow-on Analysis

There is a tremendous deal of analysis of the accuracy and behavior of these algorithms

that is yet to accomplished. Because of time constraints, this thesis was unable to answer

all the questions about this algorithm that may be asked by GN&C engineers before it is

implemented on a spacecraft. The purpose of the thesis is to demonstrate the basic effec-

tiveness of the new method, but answers to questions relating to the precisely quantified

robustness to changes in the rendezvous position, large uncertainties introduced in the

dynamics, and other factors are left to engineers who would approach the problem with

more specific mission requirements and hardware design in mind.
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Chapter 9

Conclusion

The objective of this thesis was to present a framework with which to solve a certain

class of spacecraft guidance problems. These problems include a mission to rendezvous

along a Keplerian trajectory while under the constraints of a fixed ∆V and requirement to

rapidly de-orbit. Given the initial conditions for two trajectories, the Trajectory Boundary

Condition Selection algorithm automatically determines a spacecraft ignition point and

rendezvous point. These two points define a favorable transfer orbit with a cost function

that captures the preferences of mission managers. Given this transfer orbit, a reference

guidance solution including a plane of maneuver is calculated. The reference trajectory

arrives near the rendezvous point at rendezvous time and results in rapid de-orbit of both

the first and second stages. Finally, the method of linear perturbations is used to close

the loop using slight modifications to the guidance solution control inputs for a further

improvement in accuracy.

Hypothetical spacecraft characteristics and an example mission were provided as a

starting point. For each step along the way, appropriate analysis and results were included.

The purpose was not to determine specific accuracy results, but rather demonstrate the

general effectiveness of a new guidance strategy. The new guidance method shows an

improvement in accuracy of two orders of magnitude over the Closed-Loop Lambert GEM

method it was designed to replace.
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9.1 Key Developments, Observations and Results

The hope is that the framework developed here could be implemented by tailoring the

specific strategies to whatever the mission requirements dictate. The following are the

most important new developments, observations, and results detailed in this thesis.

9.1.1 Analysis of Relationship between Perigee and ∆V

Chapter 4 derived and explained a substantial amount about the relationship between

perigee and ∆V and developed an understanding of the impact imparting velocity in spe-

cific directions and at specific magnitudes had on the reentry characteristics of a transfer

orbit. Applied to this mission, it creates an awareness of “restricted areas” in velocity-

space which cause the spacecraft to remain in orbit. In particular, the algorithm for

finding gradient of perigee and its application to automatic first stage reentry in Chapter

6 is a entirely new and promising approach.

9.1.2 Impact of Initial Conditions on Possible Transfers

Chapter 5 uses three different scenarios to illustrate how initial conditions impact the

possible transfers and their different orbit parameters. It concluded that certain para-

meters were largely dependent on the initial conditions while a trajectory selection and

guidance algorithm could control other parameters. Specifically, it was discovered that

the re-entry characteristics could be determined by trajectory selection, since a given set

of initial conditions typically had a wide range of perigee and apogee altitudes. On the

contrary, the relative velocity at rendezvous was not something that a great deal of control

could be exercised over but rather it is dictated by the relative orientation of the initial

conditions for the spacecraft and Keplerian trajectory. Rendezvous time depended both

on the initial conditions and the transfer orbit selected.
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9.1.3 Framework for Selecting an Optimal Transfer

Chapter 5 introduced Trajectory Boundary Condition Optimization. This is a framework

that can be used to choose one particular transfer orbit solution from an infinite number

of different possibilities. A sample cost function was used to show how engineers might

capture the preferences of human decision makers over a number of parameters that relate

to re-entry properties and likelihood of mission success.

9.1.4 A New Reference Guidance Solution Technique

Chapter 6 introduces a new technique that involves calculating a “plane of maneuver”

in which the ∆V is imparted. Using two alternate baseline definitions of general energy

management (GEM) maneuvers, a straightforward algorithm was developed that found

a GEM solution based on the transfer orbit geometry by using lookup tables. The GEM

solution is then rotated into the earth-centered inertial frame using relationships derived

in Chapter 4. This GEM plane of maneuver defines an attitude profile during a burn such

that the first stage perigee is automatically minimized, making first stage re-entry highly

likely at no cost to flexibility or accuracy. Scenario results from Chapter 8 demonstrate

that this new gradient of perigee technique was successful in causing rapid atmospheric

reentry for the first stage.

9.1.5 Substantial Improvements in Baseline Accuracy

By using the reference solution with the method of linear perturbations, results indicate a

one to two order of magnitude reduction in error from the original Closed-Loop Lambert

GEM technique. While the accuracy needs to be re-evaluated with a full navigation and

attitude control system responding to dynamic uncertainties, these results indicate that

the new method is clearly superior to closed-loop Lambert GEM.
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9.2 Recommendations for Future Work

Since many areas closely related to this work remain unexplored, there are ample oppor-

tunities to further investigate several of the topics contained in this thesis. The following

areas are a few of the best choices for continued research.

9.2.1 Examining the Effects of Uncertainties on Accuracy

The next step in this research would be to model a theoretical navigation and control

system so that monte carlo style sensitivity analysis can be done. More specifics about the

hardware would need to be assumed. The new guidance method developed in this thesis

should be tested against uncertainties. Theoretically, GEM employed with the method

of linear perturbations should have strong robustness to uncertainties in dynamics and

changes in the rendezvous point, particularly early on during the burn. This should be

verified with continued use of six degree of freedom simulations. The problem also posed

unique challenges. A fixed ∆V (typically solid rocket) propulsion system with no engine

cut-off mechanism can introduce a great deal of error if the actual thrust impulse is not

accurately known. This is just one major source of accuracy errors and exactly how

significant the error is should be a focus of future research.

9.2.2 Relating ∆V to Re-entry Time

Chapter 4 develops the analytic relationships between perigee and ∆v. The results can be

used to carefully control perigee altitude during the maneuver. However, if a real mission

had a reentry requirement that was a matter of years instead of a matter of hours it

might be better to relate time until reentry directly to ∆v. One promising avenue would

be an attempt to develop a function that would basically take perigee altitude, apogee

altitude, and ballistic coefficient and return the mean and variance for expected reentry

time. This might be accomplished by using the calculus of variations and perturbation

methods upon the orbital elements of e and a.
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9.2.3 Refining the TBCS Optimization Technique

As currently employed, Trajectory Boundary Condition Selection is able to calculate a

relatively “favorable” transfer trajectory. While it may suit the purposes of this mission,

it is not necessarily “optimal,” and the technique itself is not very elegant. While the

current implementation looks to be sufficient, there are probably better methods. A

related problem would be to do a more thorough job of defining a cost function, which is

very important because this defines which trajectories are “better” than others.
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Appendix A

Properties of the Example Spacecraft

In order to give the reader an intuitive feel for the problem, a hypothetical baseline vehicle

has been assumed. A two-stage vehicle capable of a 3.0 km/sec ∆V would have a mass

as small as 100 kg. Using nothing but the ideal rocket equation, Table A.1 lists the

applicable values for mass, specific impulse, and ∆V.

Figure A-1 shows plots of mass, thrust, and acceleration versus time for the hypothet-

ical vehicle. Figure A-1 shows a constant interstage time of 10 sec, but this may be varied

according to the methods shown in Chapter 7.

Resulting from the how the burn was simulated, the figures shown in this paper are

directly transferable to a vehicle with one or more stages, any particular burn, as long as

∆V capability is similar. Parking orbit altitude here is assumed to be 500 km.

Stage 1 Stage 2 Payload

Perigee Wet Mass (kg) 40 40 20
Dry Mass (kg) 10 10 n/a
Isp (sec) 300 300 n/a
∆V (km/sec) 1.0 2.0 n/a

Table A.1: Example Spacecraft Characteristics
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Figure A-1: Mass, Thrust, and Acceleration for Example Spacecraft
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Appendix B

Details of the Numerical Examples

B.1 TBCS

This section includes the initial conditions and other important information for the Tra-

jectory Boundary Condition Selection scenarios evaluated in Chapter 5.

B.1.1 TBCS Initial Conditions

All Vectors are given in the ECI Frame. The initial conditions for the Keplerian trajectory

are identical in all three scenarios. The maximum time allowed for rendezvous from the

start of the epoch is 28 minutes (1680 seconds).

Keplerian r0 =


−4329505.5

0.0

5229774.6

 m

Keplerian v0 =


3720.5

0.0

5646.0

 m/sec
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TBCS Scenario 1

Spacecraft r0 =


3945137.3

−1.0

5634240.0

 m

Spacecraft v0 =


−6235.9

0.0

4366.4

 m/sec

TBCS Scenario 2

Spacecraft r0 =


−5268958.6

1.0

4421181.2

 m

Spacecraft v0 =


4893.3

−0.0

5831.6

 m/sec

TBCS Scenario 3

Spacecraft r0 =


1.0

4421181.2

5268958.6

 m

Spacecraft v0 =


−0.0

−5831.6

4893.3

 m/sec

B.1.2 TBCS Cost Function

This cost function is simply a linear combination of three penalties applied to the transfer

orbit properties hp, ∆V, and trendezvous. The penalty for perigee altitude is a quadratic
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penalty beginning at 200 km below the earth’s surface. The penalty for the the magnitude

of ∆V is a quadratic penalty centered around 2.5 km/sec. The penalty for trendezvous is a

linear function that penalizes later rendezvous times.

hp = altitude of perigee (m)

∆V = ‖∆v‖ (m/sec)

trendezvous = rendezvous time (sec)

Cperigee = cost penalty for perigee

Cmag = cost penalty for magnitude of ∆V

Ctime = cost penalty for trendezvous

C = total cost for determining fitness of trajectory for mission

Cperigee =

 0 if hp ≤ k2

k1 (hp − k2)
2 if hp > k2

(B.1)

Cmag = k3 (∆V − k4)
2 (B.2)

Ctime = k5 · trendezvous (B.3)

C = Cperigee + Cmag + Ctime (B.4)

k1 = 0.0001 (cost penalty for perigee)

k2 = −200 000 m (altitude at which to begin penalizing perigee)

k3 = 0.5 (cost penalty for GEM ∆V objective)

k4 = 2.5 km/sec (objective ∆V for the GEM maneuver)

k5 = 1000 (cost penalty for rendezvous time)
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B.1.3 Intermediate Numbers for TBCS Scenario 1

The following intermediate calculations can be used to reach the optimized transfer prop-

erties given in Table 5.2 from the above initial conditions.

The following vectors are simply the above initial conditions propagated forward using

Kepler’s method of propagating the two-body equation of motion discussed in Section

2.1.4. Note that for the Scenario 1 optimized transfer, tignition = 405 sec, trendezvous = 665

sec, and the transfer time is 260 sec.

Spacecraft r(tignition) =


1117833.3

−0.9

6786694.1

 m

Spacecraft v(tignition) =


−7511.4

0.0

1237.2

 m/sec

Keplerian r(trendezvous) =


−1040406.8

−0.0

7474975.9

 m

Keplerian v(trendezvous) =


5719.6

−0.0

1103.1

 m/sec

The following velocity boundary conditions for the transfer orbit are the solution to

the lambert problem.
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Transfer Orbit v(tignition) =


−8237.2

0.0

3674.9

 m/sec

Transfer Orbit v(trendezvous) =


−8262.1

0.0

1679.8

 m/sec

∆vECI(tignition) =


−725.8

0.0

2437.7

 m/sec

∆vRTN(tignition) =


2287.3

1112.4

−0.0

 m/sec

TECI2RTN(tignition) =


0.162520 −0.000000 0.986705

−0.986705 0.000000 0.162520

−0.000000 −1.000000 −0.000000


Using Table 5.2 and Equation B.1, the optimized cost is found to be 6.6594e+005.

B.2 Reference Guidance Solution

This section includes intermediate numbers used to determine the reference guidance

solution. Note that TRPV 2ECI is calculated with the d from the Lambert instantaneous

velocity. For all reference guidance solutions, k2 = 0 and δtS2I = 0.
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B.2.1 Scenario 1 Intermediate Numbers

Spacecraft r(tignition) =


1117833.3

−0.9

6786694.1

 m

Spacecraft v(tignition) =


−7511.4

0.0

1237.2

 m/sec

Parking Orbit rwithout burn =


−851510.5

−0.7

6825225.2

 m

(Using rwithout burn) d =


−188896.3

0.7

649750.7

 m

(Using Lambert) d =


−188716.5

0.8

633800.9

 m

∆vRTN
MPFSS =


754.8

367.1

−0.0

 m/sec

∇rRTN
p (∆vRTN

MPFSS) =


50.426

−200.634

−0.000


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Reference TRPV 2ECI =


−0.285372 −0.958417 −0.000000

0.000001 −0.000000 −1.000000

0.958417 −0.285372 0.000001



Reference îRPV
initial =


0.770458

0.637491

0.000000



Reference îRPV
final =


0.893470

−0.449123

0.000000



Reference îECI
initial =


−0.830849

0.000001

0.556498



Reference îECI
final =


0.175475

0.000001

0.984484


B.2.2 Scenario 2 Intermediate Numbers

Spacecraft r(tignition) =


−3110430.7

0.9

6134654.8

 m

Spacecraft v(tignition) =


6789.7

−0.0

3442.6

 m/sec
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Parking Orbit rwithout burn =


−1318871.6

0.8

6750507.1

 m

(Using rwithout burn) d =


−5025.7

−0.8

660891.0

 m

(Using Lambert) d =


−336.8

−0.8

647429.3

 m

∆vRTN
MPFSS =


762.4

386.1

−0.0

 m/sec

∇rRTN
p (∆vRTN

MPFSS) =


54.415

−208.059

−0.000



Reference TRPV 2ECI =


−0.000520 1.000000 −0.000000

−0.000001 0.000000 1.000000

1.000000 0.000520 0.000001


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Reference îRPV
initial =


0.847775

0.530357

0.000000



Reference îRPV
final =


0.928643

−0.370974

0.000000



Reference îECI
initial =


0.529916

−0.000001

0.848050



Reference îECI
final =


−0.371457

−0.000001

0.928450


B.2.3 Scenario 3 Intermediate Numbers

Spacecraft r(tignition) =


1.0

3225714.4

6074828.0

 m

Spacecraft v(tignition) =


−0.0

−6723.5

3570.2

 m/sec

Parking Orbit rwithout burn =


0.7

−329363.9

6870246.6

 m
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(Using rwithout burn) d =


−983400.7

329363.9

615379.0

 m

(Using Lambert) d =


−1025755.5

329063.5

555102.6

 m

∆vRTN
MPFSS =


438.6

−20.6

−697.9

 m/sec

∇rRTN
p (∆vRTN

MPFSS) =


0.435

19.268

−0.038



Reference TRPV 2ECI =


−0.846433 0.011559 −0.532369

0.271537 0.869381 −0.412850

0.458060 −0.494008 −0.739011



Reference îRPV
initial =


0.507245

0.861802

0.000000



Reference îRPV
final =


0.792164

−0.610309

0.000000


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Reference îECI
initial =


−0.419387

0.886970

−0.193389



Reference îECI
final =


−0.677568

−0.315489

0.664355


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